
Copyright © Byron Mattingly 2013. All Rights Reserved. 6

Byron Mattingly, PhD, MPH, MBA

http://www.linkedin.com/in/byronmattingly

ASQ: CBA, CMQ/OE, CQA, CRE, CQE, CSQE, CSSBB

ANSI-ASQ ISO 17025 Certified Lead Assessor

HL7 Certified Control Specialist

HIMSS CPHIMS, PMP, PMI-ACP

ASQ Software Division: Examining and Awards Chair

Newsletter Chair and Editor

The views expressed in this presentation are my own and do not reflect the
views of my employer or other organizations with which I am or have been
affiliated.

All cited Trademarks are the property of their respective owners.

Copyright © Byron Mattingly 2013. All Rights Reserved.

Abstract

This session focuses on auditing software

vendors that utilize Agile methodologies

(e.g., “test-first,” “loose coupling,” etc.) and

some of the newer quality tools and

technologies in their software development

processes:

• test-driven development

• continuous integration

• continuous verification using automated testing

7

Copyright © Byron Mattingly 2013. All Rights Reserved.

In this session . . .

� Which areas should be investigated?

� How do you audit such software,

including the “hidden” software tools

behind it?

� What are some of the most important

questions to ask?

8

Copyright © Byron Mattingly 2013. All Rights Reserved.

According to John W. Helgeson:

“[t]he purpose of software quality audits is to monitor

software development, the development process,

and to help management obtain an independent

view of the software development status.”
—The Software Audit Guide, ASQ Press 2010, p. xv

An audit program of vendor software developed

using agile methodologies thus raises particular

challenges because of the reliance of such

methodologies on “hidden” software tools that

sustain the validation environment.

9

Copyright © Byron Mattingly 2013. All Rights Reserved.

Software Vendor Audits

Software supplier audits are often a weak spot in a validation and a
HUGE hole in purchasing controls and supplier management.
Image source (3/24/2013): http://www.nasa.gov/mission_pages/chandra/news/overweight_hole.html

10

Copyright © Byron Mattingly 2013. All Rights Reserved.

Auditing Software . . .

• Looks at the whole organization because

System, Process and Product audits are all

applicable

• Reduces risks

• Nothing to obviously measure or compare

against, often created de novo

• Examines how software is created

• Different types of artifacts depending on the

SDLC employed

11

Copyright © Byron Mattingly 2013. All Rights Reserved.

Apples and Androids

Image sources:

http://upload.wikimedia.org/wikipedia/commons/e/e0/Steve_Jobs_with_the_Apple_iPad_no_logo_%28cropped%29.jpg

http://en.wikipedia.org/wiki/Android_(operating_system)

� OR �

12

Copyright © Byron Mattingly 2013. All Rights Reserved.

Risks, paradigms and the Apple iPad

Source:

http://www.computerworlduk.com/news/public-sector/3319356/tablets-increasingly-used-by-us-doctors-to-treat-patients/

By the way . . .

By end of 2012, 50% of all doctors were using tablets

� The hardware, OS and native apps are

inseparable

� The iPAD is a high risk mobile platform

� consumer grade device

� few management controls

� Software is complex, but superficially

easy to change
Jigsaw diagram based on: http://en.wikipedia.org/wiki/Jigsaw_puzzle

13

Copyright © Byron Mattingly 2013. All Rights Reserved.

Why a traditional validation
model does not work

Image Source: http://en.wikipedia.org/wiki/Ford_Model_T

14

Copyright © Byron Mattingly 2013. All Rights Reserved.

Agile Manifesto:
http://www.agilemanifesto.org

The Agile Manifesto may appear to be

contrary to the values of a quality

management system

“We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.”

Image source (4/20/2013): http://en.wikipedia.org/wiki/Ultralight_aviation

15

Copyright © Byron Mattingly 2013. All Rights Reserved.

What are the tradeoffs?

16

Individuals and

interactions

Processes and tools

Copyright © Byron Mattingly 2013. All Rights Reserved.

Agile Characteristics

• Cross-functional teams work in short

iterations and take an incremental

approach

• Focus on business priorities and

customer value

• Emphasis on continuous improvement

17

Copyright © Byron Mattingly 2013. All Rights Reserved.

Agile Methodologies and Frameworks

• XP (pair programming, simple designs, refactoring)

• Lean

(defer decisions, deliver fast, eliminate waste, build quality

in, optimize the whole)

• Crystal Methodologies

(clear: 3-6, yellow: 6-20, orange: 20-40, red: 40-80)

• Feature Driven Development

(subject areas, feature sets, features)

• Dynamic Systems Development Method

(fitness of product for its intended business purpose)

• Agile Unified Process

(phases: inception, elaboration, construction, transition)

• and Scrum . . .

18

Copyright © Byron Mattingly 2013. All Rights Reserved.

Source: http://www.scrum.org/Scrum-Guides

The Definitive Scrum Guide

Scrum Overview

Scrum (n): A framework within which people

can address complex adaptive problems, while

productively and creatively delivering products

of the highest possible value. Scrum is:

• Lightweight

• Simple to understand

• Extremely difficult to master

Scrum is a process framework that has been

used to manage complex product development

since the early 1990s. Scrum is not a process or

a technique for building products; rather, it is a

framework within which you can employ various

processes and techniques. Scrum makes clear

the relative efficacy of your product

management and development practices so that

you can improve.

—Scrum Guide, p. 3

19

Copyright © Byron Mattingly 2013. All Rights Reserved.

Source (4/20/2013): www.mountaingoatsoftware.com/scrum

Scrum in 100 words

• Scrum is an agile process methodology that allows us

to focus on delivering the highest business value in the

shortest time.

• It allows us to rapidly and repeatedly inspect actual

working software (every two weeks to one month).

• The business sets the priorities. Teams self-organize to

determine the best way to deliver the highest priority

features.

• Every two weeks to a month anyone can see real

working software and decide to release it as is or

continue to enhance it for another sprint.

×

20

Copyright © Byron Mattingly 2013. All Rights Reserved.

Scrum is an Agile Framework

Pre-game phase Post-game phaseGame phase

Planning

High-level design ClosureProduct Backlog Retrospective

Sprint Backlog Sprint Review

24 hours

Daily Scrum

Meeting

Sprint

2-4 weeks

21

Copyright © Byron Mattingly 2013. All Rights Reserved.

Meir “Manny” Lehman’s Law

“As an evolving program is

continually changed, its complexity,

reflecting deteriorating structure,

increases unless work is done to

maintain or reduce it.”
—Meir Manny Lehman, 1980

Source: http://en.wikipedia.org/wiki/Technical_debt

“The computing scientist’s main challenge is not to

get confused by the complexities of his own making.”
—E. W. Dijkstra

22

Copyright © Byron Mattingly 2013. All Rights Reserved.

What is Technical Debt?

Decisions made to defer necessary

work may result in technical debt

• “Technical Debt includes those internal things that you

choose not to do now, but which will impede future

development if left undone. This includes deferred

refactoring.

• Technical Debt doesn’t include deferred functionality,

except possibly in edge cases where delivered

functionality is ‘good enough’ for the customer, but

doesn’t satisfy some standard.”

—Ward Cunningham
Source: http://c2.com/cgi/wiki?TechnicalDebt

23

Copyright © Byron Mattingly 2013. All Rights Reserved.

What is re-factoring?

Code refactoring is a “disciplined

technique for restructuring an existing

body of code, altering its internal

structure without changing its external

behavior,” undertaken in order to

improve some of the nonfunctional

attributes of the software.

Source: http://en.wikipedia.org/wiki/Code_refactoring

24

Copyright © Byron Mattingly 2013. All Rights Reserved.

What is Regulatory Debt?/1

Decisions made to defer necessary

risk management and control

throughout a software development

lifecycle may result in regulatory debt

25

Copyright © Byron Mattingly 2013. All Rights Reserved.

• Technical Debt � Refactor

• Regulatory Debt � Risk Control

(esp. Refactor into “System of Systems”)

What is Regulatory Debt?/2

“Controlling complexity is the essence of computer programming.”
—Brian Kernighan

How to Pay Down the Debt:

26

Copyright © Byron Mattingly 2013. All Rights Reserved.

1. DoD: Done vs Done-Done

2. Just-in-time design

3. Lack of spikes for understanding

what’s being developed

4. Overly large / complicated user

stories

5. Bad estimations

Sources of Regulatory Debt/1

27

Copyright © Byron Mattingly 2013. All Rights Reserved.

6. Pressure to get it done

7. Rushed sprints that compromise

good software development

8. Lack of multiple perspectives on risk

9. Weak ScrumMaster / overbearing PO

10. Nature of complex systems!

11. “Scrum—but”

Sources of Regulatory Debt/2

28

Copyright © Byron Mattingly 2013. All Rights Reserved.

12. Agile “Falls”

(hand-offs, “test” sprints, etc.)

Sources of Regulatory Debt/3

Software Tester

29

Copyright © Byron Mattingly 2013. All Rights Reserved.

V-model: “Bent” Waterfall or Agile?

• Relationship between artifacts are time-independent
• Use “hardening sprints” for regulatory compliance (and to pay down

accumulated regulatory / architectural debt
• Finish to finish parallelism (vs. start to finish)
• Design Inputs ↔ Design Outputs
• Synchronize Approvals

User

Requirements

System

Requirements

Specification

Software Detailed

Design

User Acceptance

Testing

System &

Integration

Testing

Unit Testing

Quality Assurance / Risk Control

30

Copyright © Byron Mattingly 2013. All Rights Reserved.

V(ortex)-Model/1

User

Requirements

System

Requirements

Specification

Software Detailed

Design

User Acceptance

Testing

System &

Integration

Testing

Unit Testing

Quality Assurance / Risk Control

31

Copyright © Byron Mattingly 2013. All Rights Reserved.

• Relationship between artifacts are time-
independent

• Use “hardening sprints” for regulatory
compliance (and to pay down accumulated
regulatory / architectural debt

• Finish to finish parallelism (vs. start to finish)

• Design Inputs ↔ Design Outputs

• Synchronize Approvals

V(ortex)-Model/2

32

Copyright © Byron Mattingly 2013. All Rights Reserved.

Test early and often . . .

• “Forces” projects to develop testable
requirements early

• Examples of dramatic compressions of
software development lifecycle
timelines when used in conjunction
with continuous integration

• Can’t prove “correctness” but can
improve robustness

33

Copyright © Byron Mattingly 2013. All Rights Reserved.

Example JUnit Continuous Integration
Testing System: Cruise Control

Source (3/24/2013): http://cruisecontrol.sourceforge.net/reporting/jsp/index.html

See also Hudson, Jenkins, et al.

34

Copyright © Byron Mattingly 2013. All Rights Reserved.

Example Continuous Integration
Testing System: Architecture

Source (3/24/2013): http://cruisecontrol.sourceforge.net/overview.html

35

Copyright © Byron Mattingly 2013. All Rights Reserved.

Example Automated Verification Testing System
High Level Design

TC = Test Case
Goal: 90-95% TCs Automated

Device Under TestTest Automation HostTest Automation Client

TC1 TC2 . . . TCN

Test Management

System

Python Keyword

Library

Python

RESTful Web

Services

Test Harness

(Switch box, patient
simulators, etc.)

C++ / Java

Test Agent

Clinical Software

Test Controller: PC or Linux SBC

36

Copyright © Byron Mattingly 2013. All Rights Reserved.

What is Continuous Agile Testing?

• Establishes test environment and
configures testing tools; tests as code
becomes (relatively?!) stable

• Combines manual and automated
testing approaches

• Is performed at unit, integration and
acceptance levels. (Can be extended
post-implementation by design.)

37

Copyright © Byron Mattingly 2013. All Rights Reserved.

Continuous Agile Testing: Challenges

• QA teams are often distributed and not co-located.

• Agile development teams do not consider testing their

responsibility; “Quality” is the responsibility of QA.

• Sprint Backlog and Planning often fail to include test

planning, execution and reporting. Testing resources

typically added at later stages of development.

• Test automation can take time to implement and maintain.

• Verification activities for regulated industries can be rigidly

defined by the manufacturer’s QMS and burdensome to

document.

38

Copyright © Byron Mattingly 2013. All Rights Reserved.

Continuous Agile Testing:
Best Practices / Strategies

• Automate throughout the SDLC. Testing is not a

phase; everybody tests!

• Embrace concurrent testing—manual, semi-

automated and automated. Promote ad hoc and

independent testing that explores corner cases,

patient flows and scenarios, and foreseeable misuse.

• Test loosely coupled systems partitioned by risk;

allocate testing assets and perform functional

validations of “System of Systems” according to risk

level.
39

Copyright © Byron Mattingly 2013. All Rights Reserved.

Intended Use Statement

System Defining Questions

• Why does this system exist?

• What is it supposed to do?

• Who is supposed to use it?

• Where will it to be used?

• When will it to be used?

Boundaries of the system

• What parts of the overall process does this system

automate?

• What are the interfaces between this system and other

processes?

• What are the interfaces between this system and other

systems?

Why?

What?

Who?Where?

When?

?

40

Copyright © Byron Mattingly 2013. All Rights Reserved.

Example “Detailed” User / System
Requirements

2.c When you tap the “Animations” category, 3 animations can be

viewed and emailed.

For the following 3 animations, each:

• Plays when tapped but without sound
• Can be paused and re-started
• Can be maximized to full screen when the <maximize arrows> are tapped

with a finger; can be minimized to normal size when the <minimize
arrows> are tapped

• Has an email icon enabled that when tapped will open an Outlook
message with the animation already attached.

1. Mickey animation

2. Pluto animation

3. Donald animation

41

Copyright © Byron Mattingly 2013. All Rights Reserved.

Risk Management (Control)

Following the estimations of risk, risk

management focuses on controlling or

mitigating the risks.

Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management (July 18, 2000), p. 8

The estimation of risk for a given hazard is a

function of the relative likelihood of its

occurrence and the severity of harm resulting

from its consequences.

Risk = Severity x Probability of hazard

42

Copyright © Byron Mattingly 2013. All Rights Reserved.

Example Risk Rating

Severity

Frequency Business Compliance Hazard to People

Regularly occurs:

> 1 in 100 to 1 in 10
Major Major Major

May occur, with unknown regularity:

> 1 in 1,000 to 1 in 100
Moderate Moderate Major

Highly unlikely:

> 1 in 1,000,000 to 1 in 1,000
Minor Minor Moderate

Severity

• Business: A business problem or inconvenience results unrelated to
compliance or a personal injury

• Compliance: Compliance is compromised as a result
(e.g. exposure to a regulatory finding)

• Hazard to People: A person is injured or harmed in any way

Risk Level

• Major: Likely to occur with serious consequences
• Moderate: May occur with potentially serious consequences
• Minor: Unlikely to occur

43

Copyright © Byron Mattingly 2013. All Rights Reserved.

Example Risk Register / Mitigation Plan

ID Risk Impact
Initial Risk

Level
Mitigation

Residual Risk

Level

1
Major, Moderate

or Minor

Major, Moderate

or Minor

2
Major, Moderate

or Minor

Major, Moderate

or Minor

. . .
Major, Moderate

or Minor

Major, Moderate

or Minor

N
Major, Moderate

or Minor

Major, Moderate

or Minor

44

Copyright © Byron Mattingly 2013. All Rights Reserved.

A Preliminary Hazard Analysis (PHA) identifies hazards,
consequences, level of risk (risk index), and potential
mitigations (usually implemented in the design) in the early
stages of a project’s life cycle

But: Should keep re-visiting PHA as requirements, design, and conditions
evolve!

Preliminary Hazard Analysis (PHA)

45

Copyright © Byron Mattingly 2013. All Rights Reserved.

FTA: Intended Use vs. Undesired Effects

Diagram based on: https://en.wikipedia.org/wiki/Fault_tree_analysis

• Analyze effects to deductively
find how they are caused by
combinations of other
failures.

• Requires thorough
understanding of system and
its intended use(s)

• Shows robustness—i.e.
resistance of complex
systems to external events.

• Not good at examining
multiple system-wide failures
but good at examining
multiple interrelated causes of
failure.

See also: http://www.hq.nasa.gov/office/codeq/risk/docs/ftacourse.pdf

http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

1 2 3 4 5 6

7 8

Undesired Effect

OR

ANDOR OR

AND

46

Copyright © Byron Mattingly 2013. All Rights Reserved.

Risk-Based Validation Model

Software Type

%Projects

Vendor

Assessment

User

Reqts

UAT System

Reqts

System /

Integration

Testing

Software

Design

Unit

Testing

1. OTSS

~10%

2. Configured

~55%

3. Customized

/ Developed

~35%

$$$$$

$$$

FDA: Risk-based approach to allocate validation efforts

OTSS = "Off The Shelf Software"

Copyright © Byron Mattingly 2013. All Rights Reserved.

Antikythera mechanism: Intended Use?

Image source: http://en.wikipedia.org/wiki/Antikythera_mechanism

Prime Numbers: 19, 53, 127, 223

48

Copyright © Byron Mattingly 2013. All Rights Reserved.

A Tightly Coupled System: 0.112579655

Image source: http://en.wikipedia.org/wiki/Antikythera_mechanism

49

Copyright © Byron Mattingly 2013. All Rights Reserved.

Partition by Risk into “System of Systems”

Risk-based Agile Deployment means partitioning an overall system
by identifying intended use(s) and by using risk as a scaling factor
into a “System of Systems” that are loosely coupled (coherent and
cohesive) and that can be validated according to risk level.

50

Copyright © Byron Mattingly 2013. All Rights Reserved.

Decompose “System of Systems” into

separate functional validations

This simplifies the validation effort and reduces the risk

of “vertical cascading” that can push an overall system

to a tipping point and into catastrophic failure.

51

Copyright © Byron Mattingly 2013. All Rights Reserved.

Key Questions

• How does automation support development?

• What about other types of manual testing,

e.g. ad hoc, corner case, foreseeable

misuse?

• How often and when does “paying down”

technical debt / compliance debt by

refactoring get recorded in document

control?

52

Copyright © Byron Mattingly 2013. All Rights Reserved.

Thank you!

ByronMattingly2013@yahoo.com

• Document Control / Electronic Notebook

• Issue tracking / CAPA Mgmt / Cmplnt

Handling

• Configuration Management / Cont. Integration

• Test Controller

53

