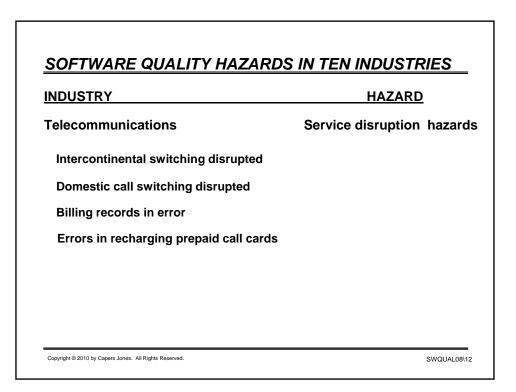


NDUSTRY	HAZARD
Airlines	Safety hazards
Air traffic control problems	
Flight schedule confusion	
Navigation equipment failures	
Maintenance schedules thrown off	
Delay in opening Denver airport	
Passengers booked into non-existent seats	
Passengers misidentified as terror suspects	
Suspicious shipments may not be identified	

NDUSTRY	HAZARD
Defense	Security hazards
Base security compromised	
Computer security compromised	
Strategic weapons malfunction	
Command, communication network problem	ms
Aircraft maintenance records thrown off	
Logistics and supply systems thrown off	
Satellites malfunction	

INDUSTRY	HAZARD
Finance	Financial transaction hazards
Interest calculations in error	
Account balances thrown off	
Credit card charges in error	
Funds transfer thrown off	
Mortgage/loan interest payme	ents in error
Mortgage paperwork lost in o	cyberspace
Hacking and identity theft du	e to software security flaws
Denial of service attacks due	to software security flaws

NDUSTRY	HAZARD
Health Care	Safety hazards
Patient monitoring devices malfunction	
Operating room schedules thrown off	
Medical instruments malfunction	
Prescription refill problems	
Hazardous drug interactions	
Billing problems	
Medical records stolen or released by acciden	t


NDUSTRY	HAZARD
nsurance	Liability, benefit hazards
Policy due dates in error	
Policies cancelled in error	
Benefits and interest calculation errors	
Annuities miscalculated	
Errors in actuarial studies	
Payment records in error	

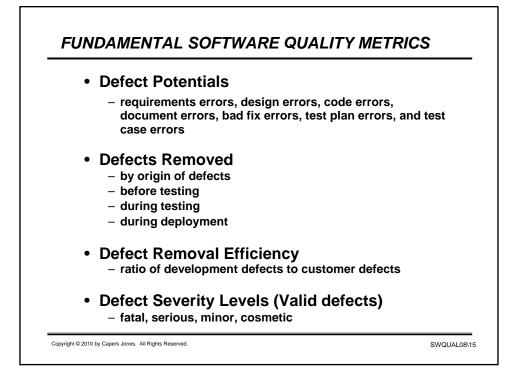
INDUSTRY	HAZARD
State, Local Governments	Local economic hazards
School taxes miscalculated	
Jury records thrown off	
Real-estate transactions misfiled	
Divorce, marriage records misfiled	
Alimony, child support payment records los	t
Death records filed for wrong people	
Traffic light synchronization thrown off	

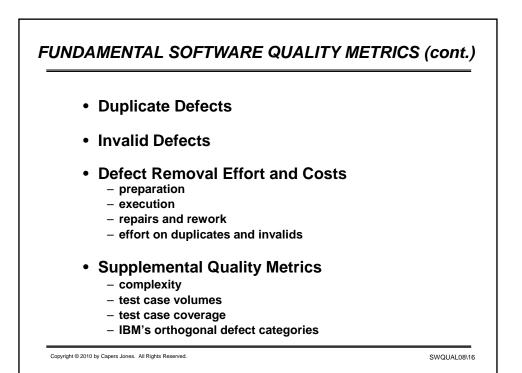
INDUSTRY	HAZARD
Manufacturing	Operational hazards
Subcontract parts fail to arrive	
Purchases of more or less than ec	conomic order quantities
Just-in-time arrivals thrown off	
Assembly lines shut down	
Aging errors for accounts receiva	ble and cash flow
Aging errors for accounts payable	e and cash flow
Pension payments miscalculated	

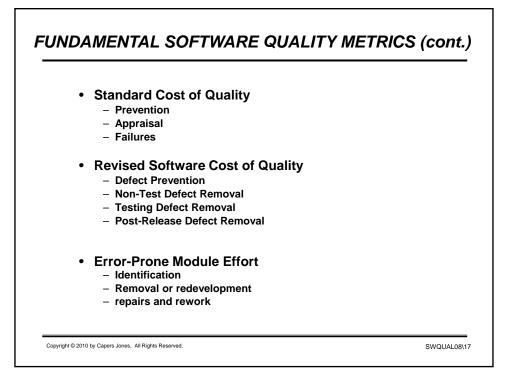
NDUSTRY	HAZARD
National Government	Citizen record hazards
Tax records in error	
Annuities and entitlements miscald	ulated
Social Security payments miscalcu	lated or cancelled
Disbursements miscalculated	
Retirement benefits miscalculated	
Personal data stolen or released by	y accident
Voting errors or hacking of vote tal	bulations

NDUSTRY	HAZARD
Public Utilities	Safety hazards
Electric meters malfunction	
Gas meters malfunction	
Distribution of electric power thrown off	
Billing records in error	
Nuclear power plants malfunction	

SOFTWARE QUALITY HAZARDS ALL INDUSTRIES

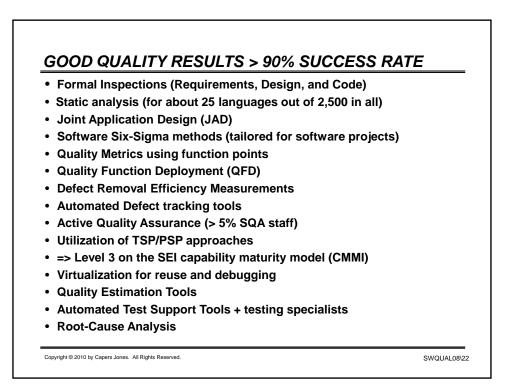

- 1. Software is blamed for more major business problems than any other man-made product.
- Poor software quality has become one of the most expensive topics in human history: > \$150 billion per year in U.S.; > \$500 billion per year world wide.
- Projects cancelled due to poor quality >15% more costly than successful projects of the same size and type.
- 4. Software executives, managers, and technical personnel are regarded by many CEO's as a painful necessity rather than top professionals.


SWQUAL08\13


5. Improving software quality is a key topic for all industries.

Copyright © 2010 by Capers Jones. All Rights Reserved.

BASIC DEFINITIONS Software that combines the SOFTWARE characteristics of low defect QUALITY rates and high user satisfaction Clients who are pleased with a USER SATISFACTION vendor's products, guality levels, ease of use, and support Technologies that minimize the DEFECT PREVENTION risk of making errors in software deliverables Activities that find and correct DEFECT REMOVAL defects in software deliverables **BAD FIXES** Secondary defects injected as a byproduct of defect repairs Copyright © 2010 by Capers Jones. All Rights Reserved. SWQUAL08\14


(Data express	ed in terms of def	ects per function	point)
(Defect	Removal	Delivered
Defect Origins	Potential	Efficiency	Defects
Requirements	1.00	77%	0.23
Design	1.25	85%	0.19
Coding	1.75	95%	0.09
Documents	0.60	80%	0.12
Bad Fixes	<u>0.40</u>	<u>70%</u>	<u>0.12</u>
TOTAL	5.00	85%	0.75

(Data express	sed in terms of d	efects per function	on point)
	Defect	Removal	Delivered
Defect Origins	Potential	Efficiency	Defects
Requirements	0.40	85%	0.08
Design	0.60	97%	0.02
Coding	1.00	99%	0.01
Documents	0.40	98%	0.01
Bad Fixes	<u>0.10</u>	<u>95%</u>	<u>0.01</u>
TOTAL	2.50	96%	0.13
SERVATIONS			
st often found in systems s		MM Lovel 3	

201001 110	emoval iciency	Delivered Defects
Requirements 1.50		
Requirements 1.50		
	50%	0.75
Design 2.20	50%	1.10
Coding 2.50	80%	0.50
Documents 1.00	70%	0.30
Bad Fixes 0.80	<u>50%</u>	<u>0.40</u>
TOTAL 8.00	62%	3.05
TOTAL 8.00 BSERVATIONS	62%	3.05

Mathad	Defect	Removal	Delivered
Method	Potential	Efficiency	<u>Defects</u>
TSP	2.70	97%	0.08
CMMI 5	3.00	96%	0.12
RUP	3.90	95%	0.20
CMMI 3	4.50	93%	0.32
XP	4.50	92%	0.38
Agile	4.70	91%	0.42
CMMI 1	5.00	85%	0.75
BSERVATIONS			
SP keeps high levels of	romoval officianov ak	ovo 10 000 funo	tion nointo

. . . . ___

MIXED QUALITY RESULTS: < 50% SUCCESS RATE

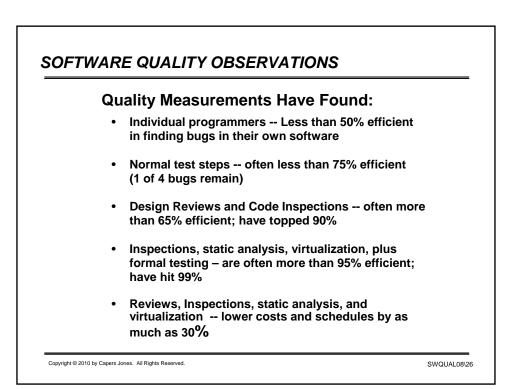
- Informal test case design without mathematical analysis
- Independent Verification & Validation (IV & V)
- Total quality management (TQM)
- Independent quality audits
- Six-Sigma quality programs (without software adjustments)
- Baldrige Awards
- IEEE Quality Standards
- Testing only by Developers
- DOD 2167A and DOD 498
- Reliability Models
- Quality circles in the United States (more success in Japan)

SWQUAL08\23

- Clean-room methods
- · Cost of quality without software modifications

Copyright © 2010 by Capers Jones. All Rights Reserved.

POOR QUALITY RESULTS: < 25% SUCCESS RATE
SO 9000 - 9004 Quality Standards
Informal Testing
Passive Quality Assurance (< 3% QA staff)
Coken Quality Assurance (< 1% QA staff)
LOC Metrics for quality (omits non-code defects)
Cost per defect metric (penalizes quality)
Tailure to estimate quality or risks early


12

A PRACTICAL DEFINITION OF SOFTWARE QUALITY (PREDICTABLE AND MEASURABLE)

- Low Defect Potentials (< 2.5 per Function Point)
- High Defect Removal Efficiency (> 95%)
- Unambiguous, Stable Requirements (< 2.5% change)
- Explicit Requirements Achieved (> 97.5% achieved)
- High User Satisfaction Ratings (> 90% "excellent")
 Installation
 - Ease of learning
 - Ease of use
 - Functionality
 - Compatibility
 - Error handling
 - User information (screens, manuals, tutorials)
 - Customer support
 - Defect repairs

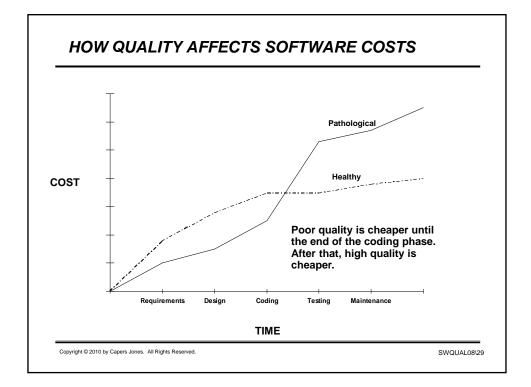
Copyright © 2010 by Capers Jones. All Rights Reserved.

SWQUAL08\25

SOFTWARE DEFECT ORIGINS

2) Design:

- 1) Requirements: Hardest to prevent and repair
 - Most severe and pervasive


Very difficult to find

SWQUAL08\27

- 3) Code: Most numerous; easiest to fix
- 4) Documentation: Can be serious if ignored
- 5) Bad Fixes:
- 6) Bad Test Cases: Common and troublesome
- 7) Data quality: Common but hard to measure
- 8) Web content: Unmeasured to date

Copyright © 2010 by Capers Jones. All Rights Reserved.

SOFTWARE DEFECT SEVERITY CATEGORIES **TOTAL FAILURE S** Severity 1: 1% at release Severity 2: MAJOR PROBLEMS 20% at release Severity 3: MINOR PROBLEMS 35% at release Severity 4: COSMETIC ERRORS 44% at release INVALIDUSER OR SYSTEM ERRORS 15% of reports DUPLICATE **MULTIPLE REPORTS** 30% of reports ABEYANT CAN'T RECREATE ERROR 5% of reports Copyright © 2010 by Capers Jones. All Rights Reserved. SWQUAL08\28

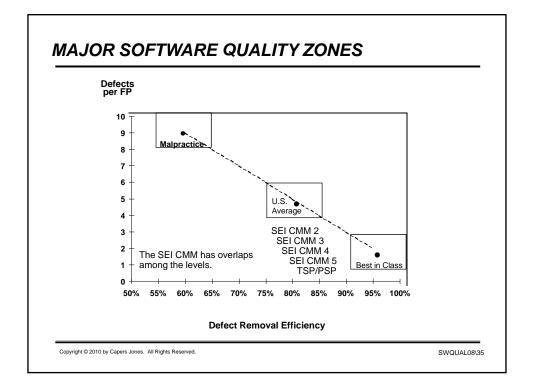
(Defects per Function Point)					
	System Software	Commercial Software	Information Software	Military Software	Outsource Software
Defect Potentials	6.0	5.0	4.5	7.0	5.2
Defect Removal Efficiency	94%	90%	73%	96%	92%
Delivered Defects	0.4	0.5	1.2	0.3	0.4
First Year Discovery Rate	65%	70%	30%	75%	60%
First Year Reported Defects	0.26	0.35	0.36	0.23	0.30

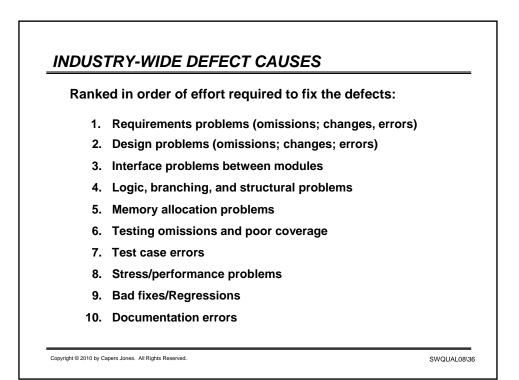
(De	efects per Fun	ction Point)		
Web Software	Embedded Software	SEI-CMM 3 Software	SEI-CMM 1 Software	Overall Average
4.0	5.5	3.0	5.5	5.1
72%	95%	95%	73%	86.7%
1.1	0.3	0.15	1.5	0.68
95%	90%	60%	35%	64.4%
1.0	0.27	0.09	0.52	0.43
	Web Software 4.0 72% 1.1 95%	Web SoftwareEmbedded Software4.05.572%95%1.10.395%90%	Software Software Software 4.0 5.5 3.0 72% 95% 95% 1.1 0.3 0.15 95% 90% 60%	Web Software Embedded Software SEI-CMM 3 Software SEI-CMM 1 Software 4.0 5.5 3.0 5.5 72% 95% 95% 73% 1.1 0.3 0.15 1.5 95% 90% 60% 35%

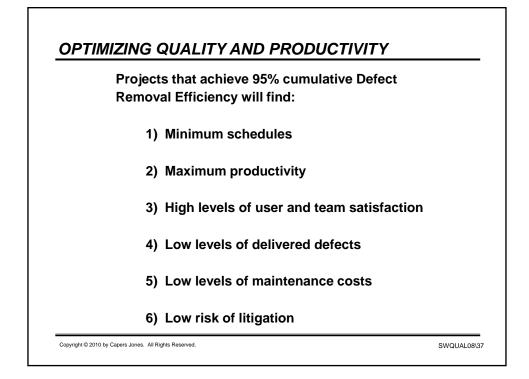
U. S. SOFTWARE QUALITY AVERAGES CIRCA 2010

(Data Expressed in terms of Defects per Function Point)					
Size	Defect Potential	Defect Removal Efficiency	Delivered Defects	1st Year Discovery Rate	1st Year Reported Defects
1	1.85	95.00%	0.09	90.00%	0.08
10	2.45	92.00%	0.20	80.00%	0.16
100	3.68	90.00%	0.37	70.00%	0.26
1000	5.00	85.00%	0.75	50.00%	0.38
10000	7.60	78.00%	1.67	40.00%	0.67
100000	9.55	75.00%	2.39	30.00%	0.72
VERAGE	5.02	85.83%	0.91	60.00%	0.38

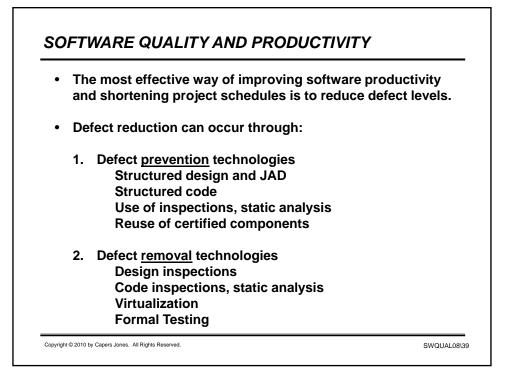
SOFTWARE DEFECT POTENTIALS AND DEFECT REMOVAL EFFICIENCY FOR EACH LEVEL OF SEI CMM

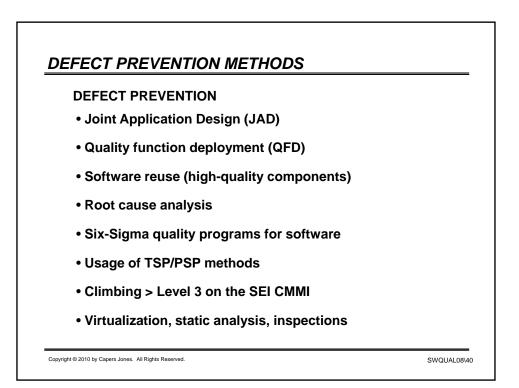

(Data Expressed in Terms of Defects per Function Point For projects nominally 1000 function points in size)

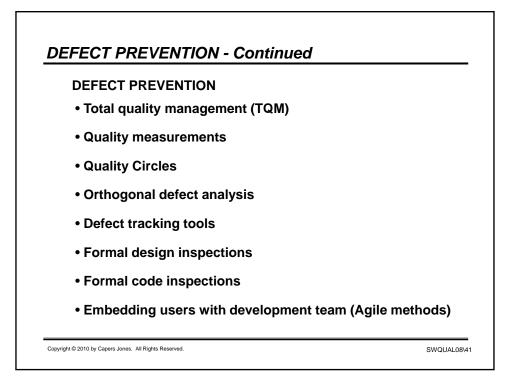

SEI CMM Levels	Defect Potentials	Removal Efficiency	Delivered Defects
SEI CMMI 1	5.00	85%	0.75
SEI CMMI 2	4.70	87%	0.60
SEI CMMI 3	4.50	93%	0.32
SEI CMMI 4	4.00	95%	0.20
SEI CMMI 5	3.00	96%	0.12
SEI CMMI 6 (TSP/PSP)	2.70	97%	0.08
Copyright © 2010 by Capers Jones. All Rights Reserved.			SWQUAL08\33

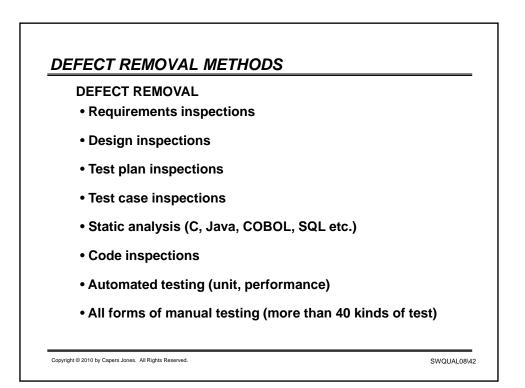

SOFTWARE DEFECT POTENTIALS AND DEFECT REMOVAL EFFICIENCY FOR EACH LEVEL OF SEI CMM

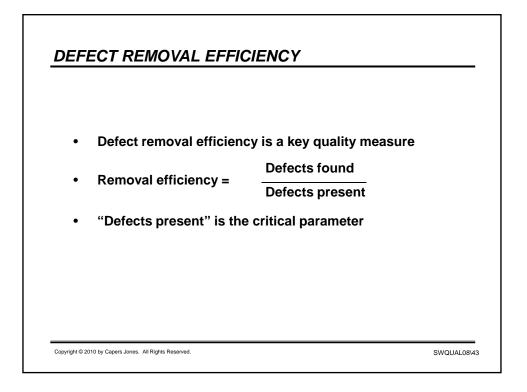
(Data Expressed in Terms of Defects per Function Point For projects > 10,000 function points in size)

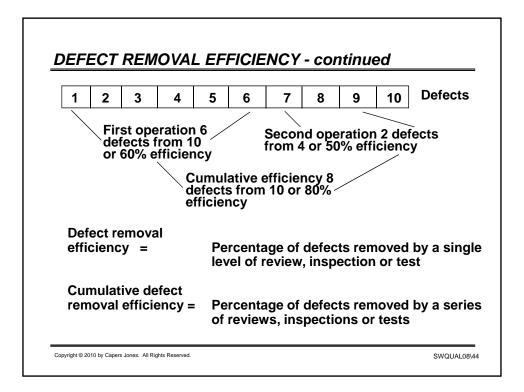

SEI CMM Levels	Defect Potentials	Removal Efficiency	Delivered Defects
SEI CMMI 1	6.00	80%	1.20
SEI CMMI 2	5.50	85%	0.82
SEI CMMI 3	5.00	90%	0.50
SEI CMMI 4	4.60	93%	0.32
SEI CMMI 5	4.25	95%	0.20
SEI CMMI 6 (TSP/PSP)	4.00	97%	0.12
Copyright © 2010 by Capers Jones. All Rights Reserved.			SWQUAL08\34

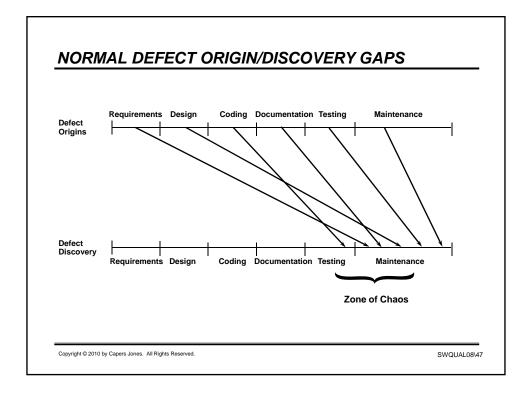


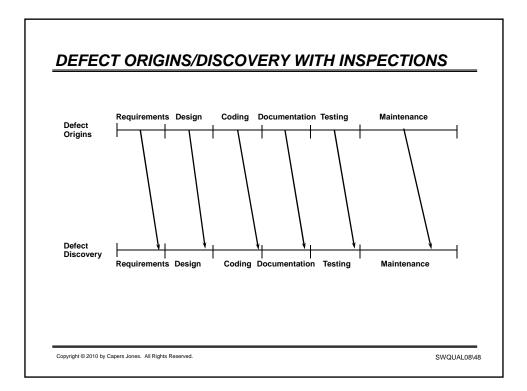





Because defect remov defect origins is a valu		ost element, studying
IBM Corporation (MVS	SPR Co	rporation (client studies)
45% Design errors 25% Coding errors 20% Bad fixes 5% Documentatio 5% Administrative		Bad fixes
TRW Corporation	litre Corporation	Nippon Electric Corp
60% Design errors 40% Coding errors	64% Design error <u>36%</u> Coding error 100%	







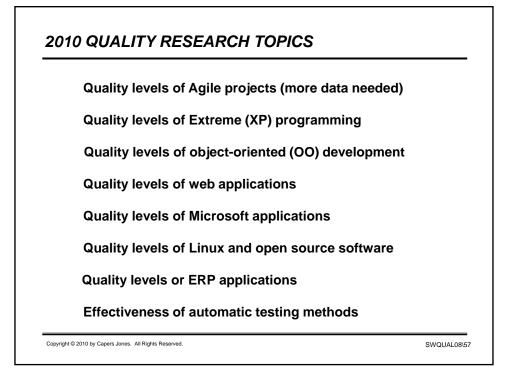
DEVELOPMENT DEFECTS	
Inspections	500
Testing	400
Subtotal	900
USER-REPORTED DEFECT	S IN FIRST 90 DAYS
Valid unique defects	100
TOTAL DEFECT VOLUME	
Defect totals	1000
REMOVAL EFFICIENCY Dev. (900) / Total (1000) = 90%

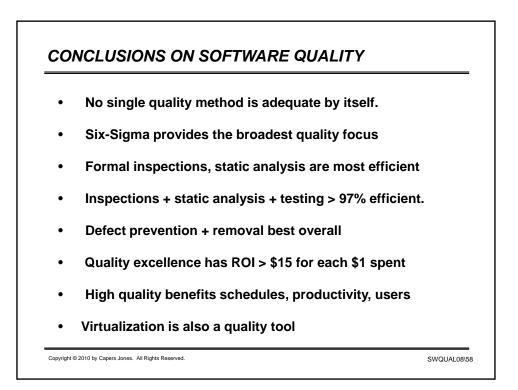
	Lowest	Median	Highest
1 Requirements review	20%	30%	50%
2 Top-level design reviews	30%	40%	60%
3 Detailed functional design reviews	30%	45%	65%
4 Detailed logic design reviews	35%	55%	75%
5 Code inspection or static analysis	35%	60%	85%
6 Unit tests	10%	25%	50%
7 New Function tests	20%	35%	55%
8 Integration tests	25%	45%	60%
9 System test	25%	50%	65%
10 External Beta tests	<u>15%</u>	40%	75%
CUMULATIVE EFFICIENCY	75%	97%	99.99%

RANGE		
DEFECT F	REMOVAL EF	FICIENC
Lowest 30%	Median 40%	Highes 50%
	DEFECT F	DEFECT REMOVAL EF

EC	SINGLE TECHNOLOC CHNOLOGY COMBINATIONS		SES REMOVAL EFFI	CIENCY
2.	No design inspections No code inspections or static analysis FORMAL QUALITY ASSURANCE No formal testing	Lowest 32%	Median 45%	Highest 55%
3.	No design inspections No code inspections or static analysis No quality assurance FORMAL TESTING	37%	53%	60%
4.	No design inspections CODE INSPECTIONS/STATIC ANALYSIS No quality assurance No formal testing	43%	57%	65%
5.	FORMAL DESIGN INSPECTIONS No code inspections or static analysis No quality assurance No formal testing	45%	60%	68%

TWO TECHNOLOGY CHANGES						
TECHNOLOGY COMBINATIONS DEFECT REMOVAL EI						
		Lowest	Median	Highest		
6.	No design inspections No code inspections or static analysis FORMAL QUALITY ASSURANCE FORMAL TESTING	50%	65%	75%		
7.	No design inspections FORMAL CODE INSPECTIONS/STAT. AI FORMAL QUALITY ASSURANCE No formal testing	53% N.	68%	78%		
8.	No design inspections FORMAL CODE INSPECTIONS/STAT.AN No quality assurance FORMAL TESTING	55% I.	70%	80%		

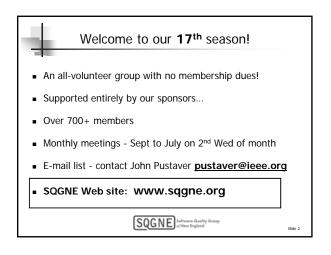

	TWO TECHNOLOGY CHANGES - continued			
TECHNOLOGY COMBINATIONS		DEFECT REMOVAL EFFICIENCY		
		Lowest	Median	Highest
9.	FORMAL DESIGN INSPECTIONS No code inspections or static analysis FORMAL QUALITY ASSURANCE No formal testing	60%	75%	85%
10.	FORMAL DESIGN INSPECTIONS No code inspections or static analysis No quality assurance FORMAL TESTING	65%	80%	87%
11.	FORMAL DESIGN INSPECTIONS FORMAL CODE INSPECTIONS/STAT.AN No quality assurance No formal testing	70% I.	85%	90%


	THREE TECHNOLOG	Y CHANG	ES	
TEC	HNOLOGY COMBINATIONS DEF	ECT REMO	VAL EFFICIENC	Y
		_owest	Median	Highest
12.	No design inspections FORMAL CODE INSPECTIONS/STAT.AN. FORMAL QUALITY ASSURANCE FORMAL TESTING	75%	87%	93%
13.	FORMAL DESIGN INSPECTIONS No code inspections or static analysis FORMAL QUALITY ASSURANCE FORMAL TESTING	77%	90%	95%
14.	FORMAL DESIGN INSPECTIONS FORMAL CODE INSPECTIONS/STAT. AN FORMAL QUALITY ASSURANCE No formal testing	83%	95%	97%
15.	FORMAL DESIGN INSPECTIONS FORMAL CODE INSPECTIONS/STAT.AN. No quality assurance FORMAL TESTING	85%	97%	99%

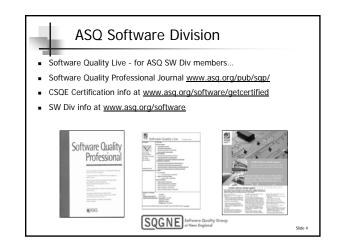
BEST CA	SE RANGE		
TECHNOLOGY COMBINATIONS	DEFECT REMOVAL EFFICIEN		FICIENCY
1. FORMAL DESIGN INSPECTIONS STATIC ANALYSIS FORMAL CODE INSPECTIONS FORMAL QUALITY ASSURANCE FORMAL TESTING	Lowest 95%	Median 99%	Highest 99.99%

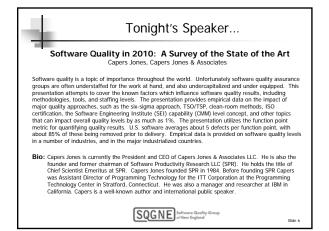
Defect Removal Efficiency Level (Percent)	Number of Projects	Percent of Projects	
> 99	6	0.40%	
95 - 99	104	6.93%	
90 - 95	263	17.53%	
85 - 90	559	37.26%	
80 - 85	408	27.20%	
< 80	161	10.73%	
Total	1,500	100.00%	

<section-header><section-header><text><text><text><text><text><text>



Gilb, T	om & Graham, Dorothy; <u>Software Inspection;</u> Addison Wesley, 1993.
Jones	Capers; Best Practices in Software Engineering; McGraw Hill, 2009
Jones	Capers; Estimating Software Costs, McGraw Hill, 2007.
	, Capers; <u>Assessments, Benchmarks, and Best Practices,</u> Addison Wesley, 2000.
Jones	Capers; <u>Applied Software Measurement;</u> McGraw Hill, 2008.
	Capers; <u>Software Quality: Analysis and Guidelines for Success;</u> nternational Thomson; 1997.
	teve; <u>Metrics and Models in Software Quality Engineering,</u> ddison Wesley, 2003.
	e, Ron; <u>High-quality, Low-cost Software Inspections,</u> Paradoxican Publishing, 2002.


REFERENCES O	N SOFTWARE QUALITY
www.ASQ.org	(American Society for Quality)
www.IFPUG.org	(Int. Func. Pt. Users Group)
www.ISBSG.org	(Int. Software Bench. Standards Group)
www.ISO.org	(International Organization for Standards)
www.ITMPI.org	(Infor. Tech. Metrics and Productivity Institute)
www.PMI.org	(Project Management Institute)
www.SEI.org	(Software Engineering Institute)
www.SPR.com	(Software Productivity Research LLC)
www.SSQ.org	(Society for Software Quality)
www.semat.org	(Software Engineering Methods and Tools)
www.cisq.org	(Consortium for IT software quality)



	I	1	1
Speaker	Affiliation	Date	Торіс
Steve and Howie Dow		9/8/10	Test your Testing Aptitude!
Stan Wrobel	CSC	10/13/10	CMM vs. Agile - Finding the right fit for your project
Capers Jones	SPR	11/10/10	SOFTWARE QUALITY IN 2010: A SURVEY OF THE STATE OF THE ART
Linda McInnis		12/8/10	Career Paths for SQA Professionals
Robin Goldsmith	GoPro Management	1/12/11	Add Steak to Exploratory Testing's Parlor Trick Sizzle
Rick Spiewak		2/9/11	A fundamental approach to improving software quality
Stephen P Berczuk		3/9/11	Build, SCM, and QA: Enablers for Agility
Johanna Rothman	Rothman & Assoc.	4/13/11	SQA in an agile environment
Damon Poole	AccuRev	5/11/11	Is Agile Any Better?
Marc Rene	Metl ife Auto & Home	6/8/11	Maximizing the Value of Testing to the Business
Marc Rene	MetLife Auto & Home		First Annual Election for SQGNE Board of Directors and At-large Members
Everyone		7/13/10	Annual Hot Topics Night

