

Presentation Flow

0 About me

0 What I hope to convey

0 Some assumptions and goals

0 Cornerstones of lean systems approach

0 Discussion on each cornerstone

0 Some key delivery principles

0 Conclusion

Some Assumptions

0 Business would typically leverage online channels to
generate revenue

0 Iterative / Agile development cycle would be the
preferred methodology (as a start)

0 Software could be released to production, as often as
possible.

Goal of this approach

Maximize delivery of new business value

0Keep changes discrete

0Eliminate batch type processing of work,
which tends to create lead times and WIP

0Deliver to production as soon as Quality
Release Candidate (QRC) is available.

Leveraging lean systems development
and testing to maximize business
value…

 What does it mean to you?

To me…

0 It is to…

Leverage principles of lean, and strive for iterative but
continuous delivery

0 4 cornerstones

0 Value stream orientation

0 Behavior Driven Development (BDD) / TDD

0 Continuous integration

0 High degree of test automation, and automated
deployment.

What is a Value Stream?
0 It is a series of steps (devoid of any complexity), mostly

value-added, required to take a product or service to any
customer

0 It can usually be identified where business repetition takes
place. Ex:
0 PO through an acquisition process

0 Customer purchasing basic groceries in a grocery store

0 Useful for
0 Establishing a business ‘storyline’ with ‘boundaries’

0 Identifying features (or core business flows) for MVP & beyond

0 Estimating and budgeting development and testing

0 Prioritizing what to work on, and when to work on it

0 Validating features, estimates and priorities.

Ex: Grocery Store Value Stream

Park and
enter store

Customer

Show where
to go

Store Manager

Have basic
items + basket

Store Manager

Have
checkout
counter

 Store Manager

Leave store

Customer

Checkout
items

Store Clerk

Is a parking lot needed?
Is a shopping cart needed?
What are the basic items?
Do we need credit card payment?
Are automatic scanners needed?
Is a store clerk needed?

Ex: eStore Value Stream

Subscribe to
eStore

template

Customer

Create Online
Store

software

Upload
Inventory

Customer

Subscribe to
operating
features

Customer

Activate
eStore

Platform

Can eStore be customized? Should it be customized?
What type of formats are supported for inventory upload?
What operating features are available? Needed in the first iteration?
What level of security is provided for the eStore?

Storyline – As a customer I want to establish an eStore
so that I can sell goods or offer services to buyers

How do we know we have delivered this value stream?

What is the role of ‘quality’? What is the role of a ‘tester’?

BDD
Behavior Driven Development – A simple way to model a system based on
business domain - help permeate information directly to technical
development and the code base. Uses…
- Expand on the scenarios that make up the value stream
- Help determine where I can start development, and frame progress and

completeness
- Better assess what should I test and how much should I test
- Manage tests better based on behavior

Specified using a language called ‘Gherkin’ – with a set of key words (Given,
When, Then)

As a (role)
I want this (feature)
To deliver this (value)

Ex: eStore BDD
Feature 1: Customer can create an online Store
Given Customer is a registered member of ‘my company’
And Is a Seller
When Customer subscribes to the eStore software

Then Software platform can create an online Store

Feature 2: Customer has an active eStore to conduct business
Given Customer has an eStore
When Customer uploads inventory
And Customer subscribes to operating platform features

Then Software platform can activate an operational eStore.

public class CustomerIsAMember implements Given {

 public void CheckSomething (SoftwarePlatform platform) {

 …

 }

}

public class CustomerSubscribesToEStore implements Event {

 public void DoSomething (SoftwarePlatform platform) {

 …

 }

}

How can we test these features?
- As they are being developed?
- What techniques can be used?

Ex: Elaborated Requirements
Requirements from the features elaborated…
1. Customer (Seller) is provided an option to create an online store
2. The software platform shall provide

i. templates to create an online estore
ii. a wizard to create an online estore

3. The software platform shall create an online estore based on information from
template or wizard

4. The customer can upload inventory
i. from a flat file
ii. from a comma separated (CSV) file

5. The customer can upload
i. images to the online store
ii. videos to the online store

6. The customer can offer secure payments through the platform’s payment gateway.

Which of these are needed for the first iteration?
How do we decide?

Teams – Squads - Guilds

Value Stream
Owner

Value Stream
Owner

Value Stream
Owner

E
ff

ec
ti

ve
n

es
s

 &
 E

ff
ic

ie
n

cy

Delivery Train

Value Stream Development Squad

Value Stream Development Squad

Value Stream Development Squad

PD & PM Arch Dev QA / QC

Team
Structure

Guilds

Is co-location of squads important?
Why or Why not?

Release Pipeline

Commit Integrate Accept Release

Low confidence High confidence
Release Candidate

Quality

High Small
% RC reaching

next stage

Fully Automated Automated and Manual Testing

Time
Min or Hrs. Days / Week(s) Hrs. or Daily

Real Mocked Environment

Pipeline… Expanded

Commit Integrate Accept Release

Commit Integrate Accept Release

• Commit Code
• Build and

package binaries
• Run unit tests
• Store artifacts

for later use

• Deploy and
configure env.

• Run smoke tests
• Run automated

integration tests

• Select
candidates to be
tested
(functionality,
usability,
performance,
etc.,)

• Deploy and
configure env.

• Run smoke tests
• Run manual and

automated tests

• Select release
candidate based
on business
need and
confidence in
quality

• Deploy to
production

Key Delivery Principles

0 Build often (but only once)
0 Binaries are constructed at check-in time and the output

(artifacts) stored

0 Later use of that version uses those artifacts and does not
attempt to re-build

0 Automate everything early – else lead times increase

0 All unit and integration testing

0 Deployment, configuration of environment, provisioning of
infrastructure

0 Maintain high fidelity – else lead and debugging times increase

0 Between environments – dev to integration to test to
production

More Key Principles
0Enhance Visibility… reduce lead times

0 @Build stages - visible with error information

0 Deployment status providing view into different environments

0 Metrics around all levels of testing, including way to decide on
confidence in quality

0Fix broken build above all… reduce WIP

0Fail fast
0 Minimize cost of defects and do not perform any value-added effort on

defective version (stop testing for regression)

0 Perform environment checks and test validation before commit

0Version Version Version
0 Version everything that is not reproducible from something else.

 Leverage tools to fit process
0 Development

0 Project / Ticket Management

0 Defect Management

0 BDD

0 Unit testing and test automation

0 Source and version control

0 Build

0 Continuous integration and deployment

0 Environment configuration and infrastructure provisioning

0 Other Testing
0 Functional

0 Performance

0 Test Management

In Conclusion

Lean systems development and testing
enables

0 Organizations to make critical decisions about
incrementally delivering of business value

0 Reduction in process risk (waste and lead
times), which tends to reduce cost of delivery

0 Continuous delivery of features to production,
significantly improving time-to-market.

