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Testing for Security 

Tips and Tools for keeping security in mind 
during functional testing.  

 
Marge Shinkle, Oracle Corp. 
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About Me 

l  Degree in Hardware and Systems Engineering 
l  About 15 years in Unix-based IT, Network 

Support, QE 
l  Currently working in Systems QE for new 

Hardware Platforms, Security Features 
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Objective 

l  To present various approaches and concepts 
l  Think of security throughout the product 
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Myths and “Myth”-conceptions of 
Security Testing 

l  “It's not my area” 
l  There is a “Security” person or team who 

specializes in Security testing 
l  The great terror of hearing “security” 
l  Our software is “behind the firewall” (a.k.a. 

The Great Denial) 
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It's Everyone's Area 

l  Security concerns are pervasive throughout 
every product, not limited to one function or 
feature 

l  Affects you, your company and, ultimately, 
your paycheck 

l  Errors potentially affect us all  

6 

What is Secure Information? 

l  Personally Identifiable Information 
l  Sensitive Information 
l  Configuration Information 
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Think CIA 

l  Confidentiality  
l  Integrity 
l  Availability 
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Where can I begin? 

l  Clear Text 
l  File permissions/ACL 
l  Shared Memory permissions 
l  Fuzz testing  
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Fuzz Testing 

l  input massive amounts of random data into 
system 

l  uses a variety of inputs  
-  random characters 
-  wildcards 
-  improper input 
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Useful Tools (UNIX)  
l  Truss/trace - follow commands as executed 
l  lsof, netstat - show open ports 
l  find, ls - check permissions 
l  lpcs - show perms on resources like shared 

memory 
l  readelf (linux) - check if binaries are built 

correctly 
l  strings, grep - check for clear text in files 
l  snoop - check network packets for clear text 
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Useful Tools (Windows) 

l  Attack Surface Analyzer 
l  Binscope - check Windows Executables are 

built correctly (freely available from Microsoft) 
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Commonly Overlooked Areas 

l  Demo files 
l  Installation Tools 
l  Late features (Feature creep) 
l  File permissions 
l  Third party  
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“You can't trust code that you did not totally 

create yourself.”  
- Ken Thompson 
“Reflections on Trusting Trust”  
 1984 
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The Weird Machine - Linux ELF 
symbol table 

 
l  Rebecca Shapiro at Darthmouth College modified the 

symbol table to implement a “Weird Machine” 
l  She wrote a BF program to su to a root shell and 

inserted it into “ping”'s symbol table, using 8 
instructions (inc, dec, (inc), (dec), jmp forward, jump 
back, print) and 3 registers 

l  A signature that excludes the symbol table 
(metadata)  will not catch this modification 

l  This exploit is not possible in Solaris, but it is a proof 
of concept 
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Weird Machine - cont'd 

l  Lesson: any input is a program, any parser is an 
interpreter 

l   (Rebecca “bx” Shapiro, Sergey Bratus, Sean W. 
Smith) 

 
http://www.cs.dartmouth.edu/~bx/elf-bf-tools/slides/

ELF-WOOT-2013.pdf 
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QE Lesson 

 
l  Be aware of interaction between your software 

and outside software 
l  Stay within Scope - don't overreach by testing 

outside software, but understand boundaries 
and look for exploits when exchanging data 
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More Low-hanging Fruit 

l  Documentation!!!!! 
-  Installation Notes 
-  Manuals 
-  Readme's 
-  Help pages  
-  Logs 
-  Debug output 
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What are we looking for? 

l  Post-install “instructions” to change 
passwords, permissions, etc 

l  Back door or factory defaults 
l  Any passwords, keys, secrets 
l  Sample data 
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Digging Deeper 

l  Compare to other companies (BSIMM) 
l  Risk Analysis 
l  Data Flow 
l  Attack Trees  
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BSIMM 

l  Building Security in Maturity Model 
l  www.bsimm.com 
l  Study of real-world existing software security 

initiatives 
l  112 activities 
l  12 initiatives  



11/12/15 

11 

21 

BSIMM Measures 
l  Strategy and Metrics 

l  Compliance and Policy 

l  Training 

l  Attack Models 

l  Security Features and Design 

l  Standards and Requirements 

l  Architecture Analysis 

l  Code Review 

l  Security Testing 

l  Penetration Testing 

l  Software Environment 

l  Configuration Management and Vulnerability Management 
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 Takeaways 

l  Fuzz Testing 
l  Attack Modeling 
l  Edge cases and boundary conditions 
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Other Stuff 

l  Risk Analysis 
l  Data Flow 
l  Attack Trees 
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Example Data Flow 
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Attack trees 

l  Attack trees are multi-leveled diagrams 
consisting of one root, leaves, and children. 
From the bottom up, child nodes are 
conditions which must be satisfied to make the 
direct parent node true; when the root is 
satisfied, the attack is complete. Each node 
may be satisfied only by its direct child nodes. 
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Summary 

l  No single solution 
l  Security is part of functional tests, not an 

outside area 
l  Look for any place where protections change 
l  Look for places where data is being moved or 

altered or stored 
l  Remember that Security belongs to all of us 
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