
11/12/15 

1 

Testing for Security 

Tips and Tools for keeping security in mind 
during functional testing.  

 
Marge Shinkle, Oracle Corp. 

2 

About Me 

l  Degree in Hardware and Systems Engineering 
l  About 15 years in Unix-based IT, Network 

Support, QE 
l  Currently working in Systems QE for new 

Hardware Platforms, Security Features 



11/12/15 

2 

3 

Objective 

l  To present various approaches and concepts 
l  Think of security throughout the product 

4 

Myths and “Myth”-conceptions of 
Security Testing 

l  “It's not my area” 
l  There is a “Security” person or team who 

specializes in Security testing 
l  The great terror of hearing “security” 
l  Our software is “behind the firewall” (a.k.a. 

The Great Denial) 
 



11/12/15 

3 

5 

It's Everyone's Area 

l  Security concerns are pervasive throughout 
every product, not limited to one function or 
feature 

l  Affects you, your company and, ultimately, 
your paycheck 

l  Errors potentially affect us all  

6 

What is Secure Information? 

l  Personally Identifiable Information 
l  Sensitive Information 
l  Configuration Information 



11/12/15 

4 

7 

Think CIA 

l  Confidentiality  
l  Integrity 
l  Availability 

8 

Where can I begin? 

l  Clear Text 
l  File permissions/ACL 
l  Shared Memory permissions 
l  Fuzz testing  



11/12/15 

5 

9 

Fuzz Testing 

l  input massive amounts of random data into 
system 

l  uses a variety of inputs  
-  random characters 
-  wildcards 
-  improper input 

10 

Useful Tools (UNIX)  
l  Truss/trace - follow commands as executed 
l  lsof, netstat - show open ports 
l  find, ls - check permissions 
l  lpcs - show perms on resources like shared 

memory 
l  readelf (linux) - check if binaries are built 

correctly 
l  strings, grep - check for clear text in files 
l  snoop - check network packets for clear text 



11/12/15 

6 

11 

Useful Tools (Windows) 

l  Attack Surface Analyzer 
l  Binscope - check Windows Executables are 

built correctly (freely available from Microsoft) 

12 

Commonly Overlooked Areas 

l  Demo files 
l  Installation Tools 
l  Late features (Feature creep) 
l  File permissions 
l  Third party  



11/12/15 

7 

13 

   
“You can't trust code that you did not totally 

create yourself.”  
- Ken Thompson 
“Reflections on Trusting Trust”  
 1984 

14 

The Weird Machine - Linux ELF 
symbol table 

 
l  Rebecca Shapiro at Darthmouth College modified the 

symbol table to implement a “Weird Machine” 
l  She wrote a BF program to su to a root shell and 

inserted it into “ping”'s symbol table, using 8 
instructions (inc, dec, (inc), (dec), jmp forward, jump 
back, print) and 3 registers 

l  A signature that excludes the symbol table 
(metadata)  will not catch this modification 

l  This exploit is not possible in Solaris, but it is a proof 
of concept 

 



11/12/15 

8 

15 

Weird Machine - cont'd 

l  Lesson: any input is a program, any parser is an 
interpreter 

l   (Rebecca “bx” Shapiro, Sergey Bratus, Sean W. 
Smith) 

 
http://www.cs.dartmouth.edu/~bx/elf-bf-tools/slides/

ELF-WOOT-2013.pdf 

16 

QE Lesson 

 
l  Be aware of interaction between your software 

and outside software 
l  Stay within Scope - don't overreach by testing 

outside software, but understand boundaries 
and look for exploits when exchanging data 



11/12/15 

9 

17 

More Low-hanging Fruit 

l  Documentation!!!!! 
-  Installation Notes 
-  Manuals 
-  Readme's 
-  Help pages  
-  Logs 
-  Debug output 

18 

What are we looking for? 

l  Post-install “instructions” to change 
passwords, permissions, etc 

l  Back door or factory defaults 
l  Any passwords, keys, secrets 
l  Sample data 



11/12/15 

10 

19 

Digging Deeper 

l  Compare to other companies (BSIMM) 
l  Risk Analysis 
l  Data Flow 
l  Attack Trees  
 

20 

BSIMM 

l  Building Security in Maturity Model 
l  www.bsimm.com 
l  Study of real-world existing software security 

initiatives 
l  112 activities 
l  12 initiatives  



11/12/15 

11 

21 

BSIMM Measures 
l  Strategy and Metrics 

l  Compliance and Policy 

l  Training 

l  Attack Models 

l  Security Features and Design 

l  Standards and Requirements 

l  Architecture Analysis 

l  Code Review 

l  Security Testing 

l  Penetration Testing 

l  Software Environment 

l  Configuration Management and Vulnerability Management 

22 

 Takeaways 

l  Fuzz Testing 
l  Attack Modeling 
l  Edge cases and boundary conditions 



11/12/15 

12 

23 

Other Stuff 

l  Risk Analysis 
l  Data Flow 
l  Attack Trees 

24 

Example Data Flow 



11/12/15 

13 

25 

26 



11/12/15 

14 

27 

Attack trees 

l  Attack trees are multi-leveled diagrams 
consisting of one root, leaves, and children. 
From the bottom up, child nodes are 
conditions which must be satisfied to make the 
direct parent node true; when the root is 
satisfied, the attack is complete. Each node 
may be satisfied only by its direct child nodes. 

28 



11/12/15 

15 

29 

30 

Summary 

l  No single solution 
l  Security is part of functional tests, not an 

outside area 
l  Look for any place where protections change 
l  Look for places where data is being moved or 

altered or stored 
l  Remember that Security belongs to all of us 
 



11/12/15 

16 

31 

References 

l  USENIX Workshop on Offensive Technologies 
https://www.usenix.org/conference/woot13 

l  www.bsimm.com 
 


