
3/9/17

1

1

Software Quality Group of
New England

How to Build Quality into Software in

6 Easy Steps

Joseph Zec
Associate Director – Technology QA & Compliance

Shire
Joseph.Zec@gmail.com

March 8, 2017

2

Agenda
“It's harder than you might think to squander millions of
dollars, but a flawed software development process is a
tool well suited to the job.”

Ø  Software Development Life Cycles
Ø  Quality activities defined and modeled
Ø  Quality activities throughout the Life Cycle

§  Requirements
§  Design
§  Coding
§  Testing
§  Release

Ø  Life Cycle Controls

3/9/17

2

3

Introduction

A robust software development
process produces robust software.
Ø  A life cycle identifies:

§  Sequencing and dependencies
§  Roles and responsibilities
§  Controls

Ø  A life cycle produces predictable
 activities and outputs

4

Software Development
Life Cycles

Common structure of life cycles

Ø  Stages
§  Development
§  Maintenance/Sustaining
§  Retirement

Ø  Development stage usually divided into phases
§  Concept/Planning/Requirements
§  Design
§  Coding/Construction
§  Testing
§  Release

3/9/17

3

5

A Definition of Quality

A conclusion that software has the
attribute known as “Quality” is highly
dependent upon comprehensive
software testing, inspections,
analyses, and other verification tasks
performed at each stage of the
software development life cycle.

6

Development tasks

Every SDLC contains common
software development tasks

Ø  Requirements
Ø  Design
Ø  Coding
Ø  Testing
Ø  Release

3/9/17

4

7

A bit more on testing

Testing is only one part of the
software quality equation!

Ø  Testing is an example of a “verification
 methodology”

Ø  Different verification methodologies are
 applicable at different stages of the
 SDLC

8

Verification
Methodologies

Static verification techniques are
executed without running the code
Ø  Reviews

§  Design review
§  Code review

Ø  Inspections
Ø  Analyses

§  Risk analysis
§  Traceability analysis

3/9/17

5

9

Verification
Methodologies

Dynamic verification techniques
are executed while the code is
running
Ø  Testing

§  Unit testing
§  User acceptance testing

Ø  Code coverage analysis

10

Development and
Verification Married
Requirements Requirements review, Risk

analysis, Trace analysis

Design Design review, Risk analysis
Trace analysis

Coding Code review, Unit test,
Integration test, Trace
analysis

Test development Test review, Trace analysis,
Code coverage analysis

Test execution System test, User acceptance
test

Release Installation test, System
inspection

3/9/17

6

11

Requirements Phase
Verification activities associated with
requirements

Ø  Review
Ø  Risk analysis

§  What types and severities of risk are associated
 with each requirement?
§  What do we do about them?

Ø  Traceability analysis
§  Traceability from user to software requirements
§  Traceability from software requirements to the rest
 of the system

12

Requirements Review
A good requirement…

n  specifies “what” not “how”
n  concisely describes a single behavior
n  is self-contained
n  is complete
n  is consistent with other requirements
n  is unambiguous
n  is verifiable
n  is non-negative
n  is traceable (non-compound, unique ID)
n  is written in formal “requirements-speak”
n  is quantified where possible
n  is feasible
n  is reviewed and approved

3/9/17

7

13

Requirements Risk
Analysis
Factors to account for in risk analysis:

Ø  What types of risks exist?
§  Human safety, customer satisfaction,
business, etc.

Ø  What impacts could they have?
§  Catastrophic, major, moderate, minor, etc.

Ø  How often could they occur?
§  Frequently, seldom, rarely, etc.

Ø  How can we mitigate their effects?
§  New requirements, design, etc.

14

Requirements
Traceability Analysis
Traces user requirements to software
requirements

Ø  Ensures that every user requirement that is
 implemented in software is accounted for

Ø  Ensures that every software requirement is
 justified

3/9/17

8

15

Design Phase
Verification activities associated with design

Ø  Review
Ø  Risk analysis

§  Each design decision can add risk, modify risk, or
control risk

Ø  Traceability analysis
§  Traceability from software requirements to design
§  Traceability from design to the rest of the system

16

Design Review
A good design…

n  correctly implements software requirements
n  complies with existing design standards
n  complies with project plans
n  is maintainable
n  is documented
n  is approved
n  is complete when nothing else can be taken
 away

3/9/17

9

17

Design Risk Analysis
Factors to account for in design risk analysis:

Ø  How do design decisions affect existing risk:
§  increase existing risk?
§  reduce existing risk?
§  add new risk?

Ø  Design is most often used as a risk control
 measure

§  Implement risk treatments identified during
 requirements risk analysis

18

Design Traceability
Analysis
Traces software requirements to design

Ø  Ensures that every software requirement is
 accounted for

Ø  Ensures that every design element is justified

3/9/17

10

19

Coding Phase
Verification activities associated with coding

Ø  Review
Ø  Testing

§  Unit test
§  Integration test

Ø  Traceability analysis
§  Traceability from design to source code
§  Traceability from source code to unit and

integration tests

20

Code Review
First a random question…

Does anyone NOT know what a Klingon is?

3/9/17

11

21

Klingon SQA

“I have challenged the entire Quality
Assurance team to a Bat-Leh contest!
They will not concern us again.”

22

Code Review
 Good source code…

n  correctly implements the design
n  complies with existing coding standards

–  Naming conventions
–  Presentation standards
–  Coding conventions

n  complies with project plans
n  is maintainable
n  is documented (commented)

3/9/17

12

23

Code Standards
 Example of Klingon source code comments

24

Code Standards

“A TRUE Klingon warrior does not
comment his code.”

3/9/17

13

25

Code Standards
 A Klingon programmer who does not apply coding

standards may find himself out of a job

26

Code Standards
 Ø  Naming conventions

Ø Rules for naming variables and constants

Ø Rules for naming functions, procedures, methods, and
their parameters

Ø Rules for naming data structures

Ø Rules for source code filenames

Ø  Develop your own standard or rely on an
 industry-standard convention

Ø Hungarian Notation

Ø CamelCase

3/9/17

14

27

Naming Conventions
 “Klingon function calls do
not have ‘parameters’ –
they have ‘arguments’ –
and they ALWAYS WIN
THEM.”

28

Code Standards

Ø  Presentation standards
§  Rules for consistent indentation
§  Rules for commenting

n  In-line comments
n  Module/function headers

§  Rules that foster clarity

Ø  Need to balance standardization with
 individual style

3/9/17

15

29

Presentation Standards

“Indentation?! I will show you how to
indent when I indent your skull!”

30

Code Standards

Ø  Coding conventions
n  Complexity management

–  Nesting

n  Exception handling

Ø Should encourage robust coding techniques
n  Always have a default at the end of a CASE statement

Ø Should discourage dangerous coding techniques
n  Do not use GOTO
n  Do not use dynamic memory allocation
n  Do not perform pointer arithmetic

Ø Should allow for exceptions to coding conventions
n  Justified, reviewed, and approved

3/9/17

16

31

Coding Conventions

“You question

the worthiness
of my code? I
should kill you
where you
stand!”

32

Unit and Integration
Test

Ø  Developer debugs the code
§  Can use documented test cases or not
§  Level of formality can suit the situation

Ø  Don’t debug code that hasn’t been reviewed
 yet
Ø  Number of levels of integration testing can be
 adjusted to meet the complexity of the code

3/9/17

17

33

Unit and Integration
Test

“Debugging? Klingons
do not debug. Our
software does not
coddle the weak.”

34

Code Traceability
Analysis
Ø  Traces design to source code

Ø  Ensures that every design element is accounted for
Ø  Ensures that all source code is justified

Ø  Traces source code to unit tests

Ø  Ensures that every unit is debugged

3/9/17

18

35

Test Development
Phase
Verification activities associated with test
development

Ø  Review

Ø  Traceability analysis

§  Traceability from software requirements to test
cases

Ø  Code coverage analysis

§  Measuring the comprehensiveness of the test cases

36

Test Development
Explored

Good practices for test development

Ø  Requirements-based test development
Ø  Traceability analysis to assess coverage
Ø  Enhance coverage by including various
 test types
Ø  Measure coverage via code coverage
 analysis
Ø  Review tests with right audience

3/9/17

19

37

Test Case Review
A good test case…

n  specifies an unambiguous expected test outcome
n  has a high probability of exposing an error
n  examines both the usual and unusual case

–  Error and alarm conditions
–  Startup and shutdown
–  Potential operator errors
–  Maximum and minimum ranges of allowed values
–  Stress conditions

n  produces documentation that permits an independent
confirmation of the pass/fail status

n  is traceable (unique ID)
n  is reusable
n  is developed by someone other than the developer
n  is reviewed and approved

38

Test Case Traceability
Analysis
Traces software requirements to test cases

Ø  Ensures that every software requirement has
 at least one test

3/9/17

20

39

Test Case Coverage
Analysis
Ø  Test case coverage analysis is only possible
 when you have access to source code that
 has been instrumented by a coverage
 analyzer tool

Ø  This is an extremely powerful method but is
 technically challenging and labor and time
 intensive

Ø  There are many ways of measuring test case
 coverage

40

Test Case Coverage
Analysis

Ø  Statement coverage

Ø  Decision (branch) coverage

Ø  Condition coverage

Ø  Multi-condition coverage

Ø  Loop coverage

Ø  Path coverage

Ø  Data flow coverage

3/9/17

21

41

Test Execution Phase
Verification activities associated with test
execution

Ø  System and user acceptance testing

Ø  Producing auditable documentation of test
 results

Ø  Logging and resolving issues

42

Test Execution Explored

Good practices for test execution

Ø  Document test results carefully
Ø  Encourage exploratory testing
Ø  Utilize a robust issue management
 process and tool

3/9/17

22

43

Test Case Execution

“By filing this bug
report you have
challenged the honor
of my family. Prepare
to die!”

44

Release Phase
Verification activities associated with
software release

Ø  Installation testing

Ø  System inspection

Ø  User training

Ø  Logging and resolving issues

3/9/17

23

45

Release Phase
“What is this talk of ‘release’? Klingons do not make
software ‘releases’. Our software escapes, leaving a bloody
trail of designers and quality assurance people in its wake.”

“Our users will know fear and cower before our software!
Ship it! Ship it and let them flee like the dogs they are!”

46

Life Cycle Controls

Typical life cycle controls

Ø  Milestones
Ø  Change control
Ø  Approvals

3/9/17

24

47

Life Cycle Controls

Milestones

Ø  Phase end reviews
§  AKA “Quality Gates” or “Project Reviews”
§  Held at the end of each phase of the SDLC

Ø  Requirements or design freeze
§  Helps control scope creep and covert design
 changes

Ø  Establishing a system baseline
§  Makes changes more difficult

48

Life Cycle Controls

Change Control

Ø  Timing of the introduction of formal
 change control is important
Ø  Includes review and approval
Ø  Includes independence of review
Ø  Includes impact and risk
 assessments

3/9/17

25

49

Life Cycle Controls
Approvals

Ø  Formal approval can be applied to
 deliverables and decisions
Ø  Control of the SDLC should be in
 proportion to a project’s complexity
Ø  For more complex projects, require more
 approvals at higher levels in the
 organization

50

Thank you!

Questions?

