
Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 1©2007 GO PRO MANAGEMENT, INC.

Proactive TestingProactive Testing™™::
Puts Agile TestPuts Agile Test--Driven (and Other) Driven (and Other)

Development on SteroidsDevelopment on Steroids

GO PRO MANAGEMENT, INC.
SYSTEM ACQUISITION & DEVELOPMENT

QUALITY/TESTING
PRODUCTIVITY

22 CYNTHIA ROAD
NEEDHAM, MA 02494-1412

INFO@GOPROMANAGEMENT.COM
WWW.GOPROMANAGEMENT.COM

(781) 444-5753 VOICE/FAX

BUSINESS ENGINEERING

TRAINING

Robin F. Goldsmith, JD

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 2©2007 GO PRO MANAGEMENT, INC.

ObjectivesObjectives
Describe the strengths and (often unrecognized)
limitations of typical test-first development
Explain key truly agile concepts of Proactive
Testing™ that further enable quicker, cheaper, and
better software development
Show a variety of Proactive Testing™ techniques
which reveal numerous otherwise overlooked test
conditions which then can be addressed selectively
based on risk

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 3©2007 GO PRO MANAGEMENT, INC.

Traditional Testing Tends to Be Reactive Traditional Testing Tends to Be Reactive
and Relatively Ineffective/Inefficientand Relatively Ineffective/Inefficient

Tends to come late when
defects are hardest and
most expensive to find/fix
Developers make more
errors that they realize
and find/fix fewer than
they believe
Testers lack sufficient
knowledge or time to test
as thoroughly as needed

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 4©2007 GO PRO MANAGEMENT, INC.

Agile Agile eXtremeeXtreme Programming Includes Programming Includes
Important TestImportant Test--Driven Techniques Driven Techniques

Pair programming provides
repeated reviews of code
Test-first development assures
code is unit tested, and
regression tested, automatically
Involved user defines automated
“acceptance tests” of somewhat
larger business
functions/integrationsPlanning , though not specifically

test planning, actually is part of XP too!

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 5©2007 GO PRO MANAGEMENT, INC.

TestTest--First Development Surely Beats First Development Surely Beats
Traditional TestTraditional Test--Last (or Never) CodingLast (or Never) Coding

Developer(s) decide how
to test that code works
and write code in the
program being developed
(Software Under Test—
SUT) to perform the tests
Then write program’s
regular, functional code
Code works when
included tests are passed

Included tests are re-executed
for every change

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 6©2007 GO PRO MANAGEMENT, INC.

TestTest--First Development Is Good; but Has First Development Is Good; but Has
Some SeldomSome Seldom--Recognized LimitationsRecognized Limitations

Programmer/code-centric view can easily miss the bigger,
more important issues to test
Developer’s (even the pair’s) mindset defining tests is likely
to be largely same as for the code
– Mainly testing what is (going to be) written
– Won’t catch what developer doesn’t understand adequately or overlooks
– Developer still is unlikely to have a testing “break it” mindset or systematic test

planning and design methods, so probably overlooks many conditions needing
testing

Agile’s fanatical resistance to writing anything other than executable
code, including tests, is high-effort with relatively low leverage payback

Plus the religious-like “How dare you question my Agile techniques?”

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 7©2007 GO PRO MANAGEMENT, INC.

Coding Is Smallest Source of ErrorsCoding Is Smallest Source of Errors

Coding
(small functions)

Focusing
here

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 8©2007 GO PRO MANAGEMENT, INC.

Coding Is Smallest Source of ErrorsCoding Is Smallest Source of Errors

System Design

Module Design
Coding
(small functions)

Diverts
attention
from
here

2/3 of errors in delivered code are in the design.
Does essentially having no design increase, decrease, or just mask that?

Focusing
here

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 9©2007 GO PRO MANAGEMENT, INC.

Coding Is Smallest Source of ErrorsCoding Is Smallest Source of Errors

Business Requirements

System Design

Module Design
Coding
(small functions)

Diverts
attention
from
here

Missed/incorrect/unclear business requirements
are biggest source of design problems

Focusing
here

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 10©2007 GO PRO MANAGEMENT, INC.

DonDon’’t Active User Involvement, User t Active User Involvement, User
Stories, and Stories, and ““Acceptance TestsAcceptance Tests””
Eliminate Requirements Issues?Eliminate Requirements Issues?

Just because a user says it, doesn’t make it
business requirements
Programmer-centric focus increases
likelihood that
– User story “requirements” are really design
– Acceptance tests actually are after the fact and

from perspective of how code is/will be written
Automated tests are likely to miss some
issues that would be apparent to a real user

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 11©2007 GO PRO MANAGEMENT, INC.

Two Types of Requirements:Two Types of Requirements:
Business/UserBusiness/User Product/System/SoftwareProduct/System/Software

Business/user language &
view, conceptual; exists within
the business environment
Serves business objectives
What business results must
be delivered to solve a
business need (problem,
opportunity, or challenge) and
provide value when
delivered/satisfied/met

Language & view of a human-
defined product/system
One of the possible ways
How (design) presumably to
accomplish the presumed
business requirements
Often phrased in terms of
external functions each piece
of the product/system must
perform to work as designed
(Functional Specifications)Many possible ways to accomplish

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 12©2007 GO PRO MANAGEMENT, INC.

Even Requirements Even Requirements ““ExpertsExperts”” Think Think
the Difference is Detailthe Difference is Detail
Business Requirements

(High-Level, Vague)
Product/
System/
Software

Reqs.
(Detailed)

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 13©2007 GO PRO MANAGEMENT, INC.

When Business/User Requirements When Business/User Requirements
Are Detailed First, Creep Is ReducedAre Detailed First, Creep Is Reduced
Business Requirements

(High-Level)

Business

Product/System/Software
Reqs. (High-Level)

Reqs.
(Detailed)

Reqs.
(Detailed)

User Acceptance Test Technical Tests

Product/
System/
Software

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 14©2007 GO PRO MANAGEMENT, INC.

Proactive Proactive TestingTestingTMTM Life CycleLife Cycle

Acceptance
Test Plan

IMPLEMEN-
TATION

Feasibility
Report

High-Level

Business
Requirements

FEASIBILITY
ANALYSIS

DEVELOP-
MENT

SYSTEM
DESIGN

SYSTEMS
ANALYSIS

Acceptance
Test

Acceptance
Criteria

Code (Debug,
Informal Review)

Technical
Test Plans

Formal Review
Black/White Box
Unit Tests

Integration Tests
System, Special

Tests
OPERATIONS &
MAINT.
[Life Cycle reit.]

Requirements-
Based Tests

Independent
(QA) Tests

Low-Level
Design

See:
www.sdmagazine.com
/articles/2002/0207
/0208 /0209 /0210

Phase’s
Primary
Deliverable

Testing
Activity

LIFECYCLE
PHASE

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 15©2007 GO PRO MANAGEMENT, INC.

Key Proactive TestingKey Proactive Testing™™ Concepts Concepts 1 of 21 of 2

Develop iteratively—whatever size piece is coded should be
designed and responsive to adequately defined REAL,
business requirements, which in turn both should be tested
Define more complete true user acceptance tests proactively
at start, keep independent of design
Use Proactive Testing™, in conjunction with more effective
discovery and specification, techniques to improve the
accuracy, completeness, and clarity/testability of the
requirements and design
– Write enough to help—but no more, and no less
– Catch big-picture issues, keep refocusing based on risk

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 16©2007 GO PRO MANAGEMENT, INC.

Let higher-level (than just code) testing planning/design
thought processes drive development to
– Economically anticipate and avert larger consequences of design

issues that ordinarily cause rework
– Plan for coding/testing early to avoid biggest rework risks as well as

implementing immediately useful functionality
– Increase awareness of more of the frequently-overlooked conditions

that code/tests must address
Plan/design tests early, prioritize, promote reuse
– Concisely define, detect issues top-down at varying levels
– Create and apply reusable test designs and test cases
– Implement selectively based on risk

Key Proactive TestingKey Proactive Testing™™ Concepts Concepts 2 of 22 of 2

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 17©2007 GO PRO MANAGEMENT, INC.

TestwareTestware----Test (Plan) Documentation Test (Plan) Documentation
per ANSI/IEEE Std. 829per ANSI/IEEE Std. 829--19981998

Stds,Policies
Sys.Design
Project Plan

Master
Test Plan

Bus. Reqs.
Acceptance
Criteria

Unit
Test Plans

Special,Sys.
Test Plans

Independent
(QA)Test Plan

Test
Designs

Test
Cases

Test Logs

Incident Rpts

Test
Summary Rpt

Independent
Test Cases

Acceptance
Test Cases

Integration
Test Plans

Acceptance
Test Plan

Acceptance
Test Design

Independent
Test Design

What must we demonstrate to be confident it works?

Test
Procedures

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 18©2007 GO PRO MANAGEMENT, INC.

Testing StructureTesting Structure’’s Advantages: s Advantages:
Organize Thoughts, Not Pump PaperOrganize Thoughts, Not Pump Paper

True Agility: Write no more than is helpful, but no less
Break big things into manageable pieces (but within the
overall context, not just isolated detail)
Manage and ease re-creating large set of test cases
Show the choices for meaningful prioritization

Focus first on larger issues, drill down later to detail
Successively spot overlooked conditions to test
Test the biggest risks more thoroughly and earlier

Enable identification of reusable Test Design Specifications
and Test Case Specifications

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 19©2007 GO PRO MANAGEMENT, INC.

Master Master
Test PlanTest Plan

Project plan for the testing
(sub)project, becomes part
of project plan
Management agreement
between customer and
technical executives,
understandable to both

States positively how
system will be tested
– Defines detailed test

plans which taken
together demonstrate that
full system works

– Sets test priorities and
strategy to address risk

– Establishes defaults, e.g.,
entry and exit criteria

United States

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 20©2007 GO PRO MANAGEMENT, INC.

DetailedDetailed
Test PlanTest Plan

Massachusetts

States positively how
piece will be tested
– Defines set of features,

functions, and capabilities
(can be a Test Design
Specification for each)
which taken together
demonstrate that it works

– Identifies exceptions to
Master Test Plan defaults

– Sequences, data sources

One per unit, integration,
special, system,
independent QA, and
user acceptance test
Technical document
Basis for detailed
workplan and estimates

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 21©2007 GO PRO MANAGEMENT, INC.

Test DesignTest Design
SpecificationSpecification

One per feature, function,
and capability—can be
consolidated for economy
and practicality
Valuable intermediate
level, often overlooked
Potential for reuse

States positively how
feature etc. will be tested
– Defines conditions that

must be demonstrated to
be confident it works

– Identifies set of Test
Cases that taken together
demonstrate conditions

– May define procedures
– Can be formal or informal

Needham

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 22©2007 GO PRO MANAGEMENT, INC.

Test CaseTest Case
SpecificationSpecification

Lowest-level, can be
simple (one input, one
result) or complex (series
of inputs-results); black
box or white box
Actually executed
Potential for reuse

States positively how test
will be executed
– Identifies input/condition

(environment), expected
results, and (preferably
separate) procedure

– Includes Specification (in
words) and Data Values
(preferably separate)

– Common formats are
script (especially when
automated) and matrix

Cynthia Road

22

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 23©2007 GO PRO MANAGEMENT, INC.

We Need to We Need to Plan/DesignPlan/Design TestsTests——Identify Identify
the Needed Set of Test Cases, Becausethe Needed Set of Test Cases, Because

Focusing mainly on test cases detail often misses many
more conditions than we tend to be aware of
– We won’t find the errors in the things we don’t know need to be

tested
– Emphasizing detail first tends to obscure awareness of other, often

bigger issues
– Such areas are more likely to have errors because development-

view overlooks them too
Meaningful prioritization requires comparing choices--we’ve
first got to know as fully as possible what the choices are
Choices depend on risks of each usage

Scale test thinking at a variety of levels, biggest value is at higher levels

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 24©2007 GO PRO MANAGEMENT, INC.

Example: Example: Proactive TestingProactive Testing™™ Master Master
Test Planning Risk Analysis forTest Planning Risk Analysis for

Web Quote Personal Auto InsuranceWeb Quote Personal Auto Insurance
(as described in Software Testing class by attendees)

For use by independent agents
1. Ascertain who client is, kind of cars, drivers, driving
records, location, marital, sex, age, VIN, usage, driver
training, grades, types of coverage, deductibles.
2. If passes initial scrutiny, find out about liens on the
vehicle, additional insured, billing plan, payment type.
Calculate and provide premium quote.
Print application form to be signed, returned with payment.

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 25©2007 GO PRO MANAGEMENT, INC.

Risks to the System in Operation that Testing Should Address
[identified by author]
1 car
1 driver
More cars than drivers
More drivers than cars
Age groups
Accidents and tickets

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 26©2007 GO PRO MANAGEMENT, INC.

Risks to the System in Operation that Testing Should Address

[identified by author]
1 car
1 driver
More cars than drivers
More drivers than cars
Age groups
Accidents and tickets
Order Motor Vehicle Record
Rates
Agents’ use
Flow to in-house system

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 27©2007 GO PRO MANAGEMENT, INC.

Risks to the System in Operation that Testing Should Address
[identified by author]
1 car, 1 driver
More cars than drivers; more drivers than cars
Age groups; accidents and tickets

Order Motor Vehicle Record Rates Agents’ use
Flow to in-house system

[added by others]
Data validation and editing
Lose connections, session continuity
Hardware capacity and performance
Compatibility—browser, O/S, platform Viruses

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 28©2007 GO PRO MANAGEMENT, INC.

Risks to the System in Operation that Testing Should Address
[identified by author]
1 car, 1 driver; more cars than drivers; more drivers than cars
Age groups; accidents and tickets
Order Motor Vehicle Record Rates Agents’ use Flow to in-house system
[added by others] Data validation and editing Lose connections, session continuity
Hardware capacity and performance Compatibility—browser, O/S, platform Viruses

New customers,
Existing custs, mult D/B records
Multiple requests for quotes
Reports on types of quotes,
quotes vs. purchases
multiple quotes for same person

Compare web applications to
phone, mail applications

Purging records
Interactions with other systems

[from author & others]
Printing quotes and app forms Underwriting rules
Send in signed printed application;
check accompanies if paying by check
Track applications, tie back to ones not sent in

Minimum set of data Calculations
Security Firewalls, anti virus
Order credit scores, receive back for calculations
Validating payment with credit card, not approved
3rd party system down

These represent a combination of Detailed (unit, integration, or special)
Test Plans and Test Design Specifications—Also Identify Design Issues

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 29©2007 GO PRO MANAGEMENT, INC.

How Many Ordinarily Would Be How Many Ordinarily Would Be
Overlooked? WhatOverlooked? What’’s the Impact?s the Impact?

Are these things developers are likely
to think to code, let alone unit test?
With a focus on small code pieces,
how many would be overlooked by
“acceptance tests” too?
If they go wrong in the delivered
system
– How many would be showstoppers?
– How much redesign and rework

Would Agile developers benefit
from economically discovering
these issues early?

Is this the way testing typically works? Reactive or Proactive?

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 30©2007 GO PRO MANAGEMENT, INC.

Functionality Matrix: Systematically Functionality Matrix: Systematically
Identify Parts of Unit Needing Tests Identify Parts of Unit Needing Tests

User view, step-by-step (Use Case)
Technical view, what’s happening “under the covers”

Physical I-O, Create, Retrieve, Update, Delete
Communicate with an external device
Interface to another piece of software
Perform logic or calculations
Change state
Meet a specified performance level
Comply with an external constraint

Each user/technical view intersection should be addressed
in a Test Design Specification (can split or consolidate)

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 31©2007 GO PRO MANAGEMENT, INC.

Functionality MatrixFunctionality Matrix

C
re

at
e

R
et

rie
ve

U
pd

at
e

D
el

et
e

C
om

m
un

.

In
te

rfa
ce

Lo
gi

c

C
hg

S
ta

te

P
er

fL
ev

el

C
on

st
ra

in
t

User View (Use Cases)

Technical View

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 32©2007 GO PRO MANAGEMENT, INC.

Functionality MatrixFunctionality Matrix

C
re

at
e

R
et

rie
ve

U
pd

at
e

D
el

et
e

C
om

m
un

.

In
te

rfa
ce

Lo
gi

c

C
hg

S
ta

te

P
er

fL
ev

el

C
on

st
ra

in
t

User View (Use Cases)

Technical View

Find applicant by driver’s license X X X
Found and confirmed X X X
Found but not confirmed X X X
Not found X X X
Search for applicant by name X X X X
Search for applicant by address X X X X
Select applicant from search list * X X X
Quit the search * X X X
Add applicant to database X X X X X X X
Quit X X X

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 33©2007 GO PRO MANAGEMENT, INC.

How Many Ordinarily Would Be How Many Ordinarily Would Be
Overlooked? WhatOverlooked? What’’s the Impact?s the Impact?

Would any of the use case steps be
likely to be overlooked? Which ones?
Are any of the technical view issues
things developers are likely not to think
to code, let alone unit test?
How many would be overlooked by
“acceptance tests” too?

Would Agile developers
benefit from economically
discovering these issues
early?

Detailed Test Planning, such as with the Functionality Matrix, deals
with smaller pieces. Use Cases are a common format for specifying
functionality, with the by-product of seemingly translating fairly readily
into tests. XP’s “User Stories” often are similar to use cases.

Proactive?

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 34©2007 GO PRO MANAGEMENT, INC.

Test Design: What Must We Test Design: What Must We
Demonstrate to Be Confident Demonstrate to Be Confident ““Find an Find an
applicant by driverapplicant by driver’’s licenses license”” Works?Works?

Assumptions: License number is fixed-length number
Valid
Actual number for my state
Actual number for a different state
Invalid
Invalid length, too long, too short
Number of proper length for my state, not a license
Number of proper length for a different state, not a license
Valid number for my state but indicated for a different state where not a license
No state, invalid state
Alphabetic, special characters

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 35©2007 GO PRO MANAGEMENT, INC.

Checklists of Added Conditions:Checklists of Added Conditions:
Data Field Formats & ContentsData Field Formats & Contents

Field length and type, inputs and outputs
– Alpha vs. numeric; mixed data types; case
– Font, pointsize, color, visibility; focus
– Special characters; packed and binary; control

keys; control characters (special meaning to O/S)
– Initialization; nulls; defaults; repetition; editing
– Dates, formats and Julian/Gregorian

Calculations and algorithms, zero, negative,
integers, intermediate results, leading zeros,
justification

Valid
Fonts, sizes, color/bkgrnd
Field initially empty, filled
Edit input
Repeat with same, diff no.
Invalid
Mixed alpha and numeric
Blank, null
Zeros, leading blanks
. , $ + - / * % () []
Other special characters
Control keys, characters

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 36©2007 GO PRO MANAGEMENT, INC.

Application Functionality:Application Functionality:
Data and Process ModelsData and Process Models

Demonstrate each output and input
– Displayed, transmitted, printed, stored, passed, error

messages and indicators; human/machine readable
– Data modification (and add, delete), loading, and

reloading
– Number of tables, elements, records, device

types/locations

Navigate all routes usage is likely to take
Environments--multiple concurrent users,
browsers, O/Ss, access constraints,
degradation, geography

Valid
Newly added, modified number
Reloaded file/DB
Key in, paste in, scan in
To field: Tab, back tab, prior, next
Arrows, link, Enter, automatic

Data on user’s hard drive, CD
server, Web

Single, multiple users
Invalid
Clicks outside indicated fields
Double clicks on fields
Paste in graphic
Deleted number
No access (security)
DB, network error

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 37©2007 GO PRO MANAGEMENT, INC.

Boundary TestingBoundary Testing----The Single The Single
Most Likely Way to Detect ErrorsMost Likely Way to Detect Errors

Within Equivalence Class:
Accept
– Normally occurring value
– Minimum, optionally plus one
– Maximum, optionally minus one

Reject
– Minimum minus one
– Maximum plus one
– Optionally, extremes high/low

Valid
Lowest number in DB
Next higher number in DB

Highest number in DB
Next lower number in DB

Proper number for state with most digits
Proper number for state with least digits
Proper number for first state in DB
Proper number for last state in DB
Invalid
Just lower than lowest number in DB
Just higher than highest number in DB
Very small number (e.g., .000000001)
Very large number
Proper length minus 1, plus 1
Very long number

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 38©2007 GO PRO MANAGEMENT, INC.

How Many Ordinarily Would Be How Many Ordinarily Would Be
Overlooked? WhatOverlooked? What’’s the Impact?s the Impact?

Without systematically and consciously asking,
what percent of the initial brainstormed Test
Cases would be likely to be overlooked? What
percent of the Test Cases prompted by the
checklists would be overlooked?
Would developers be likely to think to code, let
alone unit test these overlooked details?
Would “acceptance tests” overlook them too?

Would Agile developers
benefit from economically
discovering these issues
early? Reuse? Proactive?

Test Design Specifications identify at the lowest level the set of Test
Cases that taken together would demonstrate the feature, function, or
capability works. Having a more complete definition of the set of
possible Test Cases allows more accurate prioritization based on risk.

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 39©2007 GO PRO MANAGEMENT, INC.

Proactive TestingProactive Testing™™ Can Greatly Can Greatly
Increase TestIncrease Test--First EffectivenessFirst Effectiveness
Small amount of effort spots things that ordinarily
are overlooked and would take much more effort to
fix/provide afterward
– Bigger parts of the software unit—features, functions,

and capabilities (subject of Test Design Specifications)
– Their conditions that must be demonstrated to be

confident they work (Test Cases)
Structured proactive test planning/design enables
reuse of test cases and especially test designs
Address selectively based on risk

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 40©2007 GO PRO MANAGEMENT, INC.

SummarySummary
Typical Agile test-driven development has advantages
compared to traditional test-last (or never) development
and reactive testing but also has (often unrecognized)
limitations due to its narrow programmer-based focus
Proactive Testing™ enables truly Agile quicker, cheaper,
and better software development by feeding low-overhead
high-leverage test planning and design information into
development throughout the life cycle
A variety of Proactive Testing™ techniques efficiently
reveal numerous otherwise overlooked test conditions at
varying levels which then can be addressed selectively
based on risk and often can be reused

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 41©2007 GO PRO MANAGEMENT, INC.

Go Pro Management, Inc. Seminars--Relation to Life Cycle

Systems QA Software Quality Effectiveness Maturity Model

System Measurement ROI Test Process Management
Feasibility
Analysis Systems

Analysis System
Design

Develop-
ment Implement-

ation Operations
Maintenance

Proactive Testing:
Risk-Based Test Planning,
Design, and Management

Testing Early in the Life Cycle
Re-Engineering: Opportunities for IS

Defining and Managing
User Requirements

Credibly Managing Projects and Processes with Metrics

21 Ways to Test Requirements

Making You a Leader

Managing Software Acquisition and Outsourcing:
> Purchasing Software and Services
> Controlling an Existing Vendor’s Performance

Proactive User Acceptance Testing
Reusable Test Designs

Test Estimation
Risk
Analysis

Writing Testable SW Requirements

Proactive Testing™: Puts Agile Test-Driven (and Other) Development on Steroids- 42©2007 GO PRO MANAGEMENT, INC.

Robin F. Goldsmith, JDRobin F. Goldsmith, JD
robin@gopromanagement.comrobin@gopromanagement.com (781) 444(781) 444--57535753

www.gopromanagement.comwww.gopromanagement.com
• President of Go Pro Management, Inc. consultancy since 1982, working directly with and

training professionals in business engineering, requirements analysis, software acquisition,
project management, quality and testing.

• Previously a developer, systems programmer/DBA/QA, and project leader with the City of
Cleveland, leading financial institutions, and a “Big 5” consulting firm.

• Degrees: Kenyon College, A.B.; Pennsylvania State University, M.S. in Psychology; Suffolk
University, J.D.; Boston University, LL.M. in Tax Law.

• Published author and frequent speaker at leading professional conferences.
• Formerly International Vice President of the Association for Systems Management and

Executive Editor of the Journal of Systems Management.
• Founding Chairman of the New England Center for Organizational Effectiveness.
• Member of the Boston SPIN and SEPG’95 Planning and Program Committees.
• Chair of BOSCON 2000 and 2001, ASQ Boston Section‘s Annual Quality Conferences.
• Member ASQ Software Division Methods Committee.
• Member IEEE Std. 829 for Software Test Documentation Standard Revision Committee
• Admitted to the Massachusetts Bar and licensed to practice law in Massachusetts.
• Author of book: Discovering REAL Business Requirements for Software Project Success

