
Software Assurance:Software Assurance:
A Strategic Initiative of the U.S.A Strategic Initiative of the U.S.
Department of Homeland SecurityDepartment of Homeland Security
to Promote Integrity, Security, and to Promote Integrity, Security, and
Reliability in SoftwareReliability in Software

Security in the
Software Lifecycle

May 9, 2007 Joe Jarzombek, PMP
Director for Software Assurance

National Cyber Security Division
US Department of Homeland Security

2

Cyberspace & physical space are increasingly
intertwined and software controlled/enabled

Energy

Banking and Finance

Agriculture and Food

Water Public Health

Chemical Industry

Telecommunications Key Assets

Transportation Postal and Shipping

Farms
Food Processing Plants

Reservoirs
Treatment Plants Hospitals

Chemical Plants

Cable
Fiber

Power Plants
Production Sites

Railroad Tracks
Highway Bridges
Pipelines
Ports

Delivery Sites

Nuclear Power Plants
Government facilities
DamsFDIC institutions

Control Systems
• SCADA
• PCS
• DCS

Software
• Financial System
• Human Resources

Services
• Managed Security
• Information Services

Internet
• Domain Name System
• Web Hosting

Hardware
• Database Servers
• Networking Equipment

Critical Infrastructure / Key Resources

Sectors

Physical A
ssets

Cyber A
ssets

Cyber Infrastructure

Physical Infrastructure

Need for secure software applications

“In an era riddled with asymmetric cyber attacks, claims
about system reliability, integrity and safety must also include
provisions for built-in security of the enabling software.”

3

Cyber-related Disruptions and the Economy
Network disruptions lead to loss of:

• Money and Time
• Products and Sensitive information
• Reputation
• Life (through cascading effects on critical

systems and infrastructure)

Meta-trends:
• Worms & viruses increasingly sophisticated
• More variants of older, successful worms
• New vulnerabilities have black market value;

increasing “zero-day” exploits

Love Bug:
$15B in damages;

3.9M systems
infected

2000

Love Bug:
$15B in damages;

3.9M systems
infected

2000

Code Red:
$1.2B in

damages;
$740M for

recovery efforts
2001

Code Red:
$1.2B in

damages;
$740M for

recovery efforts
2001

Slammer:
$1B in damages

2002

Slammer:
$1B in damages

2002

Blaster:
$50B in damages

2003

Blaster:
$50B in damages

2003

My Doom:
$38B in damages

2004

My Doom:
$38B in damages

2004

Business Losses and DamagesBusiness Losses and Damages

Zotob:
Damages TBD

2005

Zotob:
Damages TBD

2005

Over $40 million in spyware damages – attacks now are
"designed to silently steal data for profit or advantage without leaving
behind the system damage that would be noticeable to the user.“
(Congressional Testimony, HE &Commerce Telecomm/Internet Subcommittee, Sep 12, 2006)

• $67.2 Billion a year is lost to
cyber crime in the USA (FBI 2005)

• $50-200M in average
shareholder losses (CRS 2006)

• 80% of hack attacks emanate
from outside of user enterprise
(2005 US-CERT-CSO E-crime Survey)

• 9 out of 10 businesses affected
by cyber crime last year (FBI 2005)

4

Why Software Assurance is Critical
Software is the core constituent of modern products and
services – it enables functionality and business operations

Dramatic increase in mission risk due to increasing:
Software dependence and system interdependence (weakest link syndrome)
Software Size & Complexity (obscures intent and precludes exhaustive test)
Outsourcing and use of un-vetted software supply chain (COTS & custom)
Attack sophistication (easing exploitation)
Reuse (unintended consequences increasing number of vulnerable targets)
Number of vulnerabilities & incidents with threats targeting software
Risk of Asymmetric Attack and Threats

Increasing awareness and concern

Software and the processes for acquiring and developing software
represent a material weakness

Software is exposed to threats all the time,
even while it’s under development.

How is software threatened or put at risk of
exploitation in development?

By developers who, through ignorance, carelessness, or intention,
sabotage or subvert the software by…

Including weaknesses and vulnerabilities, due to…
failure to consider the threat environment and its implications (e.g.,
inadequate or inaccurate threat models, misuse/abuse cases, etc.)
poor design choices
use of non-secure technologies (e.g., unsecured HTTP and SOAP)
unsafe programming practices, languages, libraries, tools
coding errors
inadequate non-functional security assessments and tests, or intentionally
“fudged” results

Leaving in backdoors, trapdoors, debugging hooks
Embedding malware (time and logic bombs, Trojan horses, etc.)
Including undocumented features/functions (“rotten Easter eggs”)

Non-secure configuration management practices
make the above easier to accomplish.

6

Where weaknesses and vulnerabilities originate
during development

Inadequate or spurious requirements
Inadequate architecture, assembly option, detailed design
Use of vulnerable processing models, software technologies
Insecure use of development tools, languages, libraries
Use of insecure development tools, languages, libraries
Poor coding practices
Coding errors
Use of vulnerable, unpatched components
Incorrect or mismatched security assumptions
Inadequate reviews, testing, assessments
Sabotaged test results
Residual backdoors
Sensitive info about software problems in user-viewable code, error
messages
Inadequate configuration documentation
Insecure installation procedures, scripts, tools

7

DHS Software Assurance Program Overview
Program based upon the National Strategy to Secure
Cyberspace - Action/Recommendation 2-14:

“DHS will facilitate a national public-private effort to promulgate
best practices and methodologies that promote integrity,
security, and reliability in software code development, including
processes and procedures that diminish the possibilities of
erroneous code, malicious code, or trap doors that could be
introduced during development.”

DHS Program goals promote the security of software across the
development, acquisition and implementation life cycle
Software Assurance (SwA) program is scoped to address:

Trustworthiness - No exploitable vulnerabilities exist, either maliciously or
unintentionally inserted
Predictable Execution - Justifiable confidence that software, when
executed, functions as intended
Conformance - Planned and systematic set of multi-disciplinary activities
that ensure software processes and products conform to requirements,
standards/ procedures

CNSS Instruction No. 4009, "National Information Assurance Glossary," Revised 2006,
defines Software Assurance as: "the level of confidence that software is free from
vulnerabilities, either intentionally designed into the software or accidentally inserted at
anytime during its lifecycle, and that the software functions in the intended manner".

8

SW Assurance related to Engineering Disciplines

Predictable Execution = requisite enabling characteristic

For a safety/security
analysis to be valid …

The execution of the system
must be predictable.

This requires …

– Correct implementation
of requirements,
expectations and
regulations.

– Exclusion of unwanted
function even in the face
of attempted exploitation.

Traditional
concern

Growing
concern

System and SW
Engineering and

Information Systems
Security Engineering

Information
Assurance

System
Safety

Predictable
Execution

Cyber
Security

*Adopted from Jim Moore, IEEE CS S2ESC Liaison to ISO SC7

Security in the Software Life Cycle:
Informed development and supply chain management

Existing processes, methods, and techniques that can help them to
specify, design, implement, configure, update, and sustain software that
is able to accomplish the following:

Resist or withstand many anticipated attacks.
Recover rapidly and mitigate damage from attacks that cannot be resisted
or withstood.

The key to secure software is:
A security-enhanced software development life cycle process -- includes
practices that not only help developers root out and remove exploitable
defects (e.g., vulnerabilities) in the short term, but also, over time, increase
the likelihood that such defects will not be introduced in the first place.
A security-enhanced acquisition / out-sourcing life cycle process -- includes
practices that address risks associated with the software supply chain

Functional Correctness must be exhibited even when software is
subjected to hostile conditions; therefore, claims about system
reliability, integrity and safety must include provisions for built-in
security of enabling software

Enhance “Assurance” Considerations:
Leveraging CMM-based Process Improvement

Determine how “assurance” is factored into suppliers’ process capabilities
An infrastructure for safety & security is established and maintained.
1. Ensures Safety and Security Competency within the Workforce;
2. Establishes a Qualified Work Environment (including the use of qualified tools);
3. Ensures Integrity of Safety and Security Information;
4. Monitors Operations and Report Incidents (relative to environment in which software will be used);
5. Ensures Business Continuity.

Safety & security risks are identified and managed.
6. Identifies Safety and Security Risks;
7. Analyzes and Prioritizes Risks relative to Safety and Security;
8. Determines, Implements, and Monitors the associated Risk Mitigation Plan.

Safety & security requirements are satisfied.
9. Determines Regulatory Requirements, Laws, and Standards;
10. Develops and Deploys Safe and Secure Products and Services;
11. Objectively Evaluates Products (using safety and security criteria);
12. Establish Safety and Security Assurance Arguments (with supporting evidence).

Activities/products are managed to achieve safety & security requirements.
13. Establishes Independent Safety and Security Reporting;
14. Establishes a Safety and Security Plan;
15. Selects and Manages Suppliers, Products, and Services using safety and security criteria;
16. Monitors and Controls Activities and Products relative to safety and security requirements.

Many suppliers use
CMMs to guide
process improvement
& assess capabilities;
yet many CMMs do not
explicitly address
safety and security.

Source for “Assurance” enhanced processes: U.S. DoD and FAA joint project on Safety and Security Extensions for Integrated Capability Maturity Models,
September 2004, at http://www.faa.gov/about/office_org/headquarters_offices/aio/documents/media/SafetyandSecurityExt-FINAL-web.pdf

http://www.faa.gov/about/office_org/headquarters_offices/aio/documents/media/SafetyandSecurityExt-FINAL-web.pdf

11

DHS Software Assurance Program Structure *
As part of the DHS risk mitigation effort, the SwA Program seeks to
reduce software vulnerabilities, minimize exploitation, and address
ways to improve the routine development of trustworthy software
products and tools to analyze systems for hidden vulnerabilities.
The SwA framework encourages the production, evaluation and
acquisition of better quality and more secure software; leverages
resources to target the following four areas:

People – education and training for developers and users

Processes – sound practices, standards, and practical
guidelines for the development of secure software

Technology – diagnostic tools, cyber security R&D and
measurement

Acquisition – due-diligence questionnaires, contract templates
and guidelines for acquisition management and outsourcing

* July 28, 2006 statement of George Foresman, DHS UnderSecretary for Preparedness, before
the U.S. Senate Committee on Homeland Security and Governmental Affairs, Subcommittee on
Federal Financial Management, Government Information, and International Security

12

DHS Software Assurance (SwA) Program …

PeoplePeople

Developers and users
education & training

ProcessesProcesses

Sound practices,
standards, and
practical guidelines for
the development of
secure software

TechnologyTechnology

Diagnostic tools, cyber
security R&D, and
measurement

AcquisitionAcquisition

Software Security
Improvements through
due-diligence questions,
specs and guidelines for
acquisitions/ outsourcing

… encourages the production, evaluation and acquisition of better quality and
more secure software through targeting

ProductsProducts

Build Security In - https://buildsecurityin.us-cert.gov

SwA Common Body of Knowledge (CBK)

SwA Developers' Guide on Security-Enhancing SDLC

SwA-related standards -- IEEE, ISO/IEC, OMG, NIST

Practical Measurement Guidance for SwA and
Information Security

SwA Metrics & Tool Evaluation with Common
Weakness Enumeration dictionary for tools

SwA in Acquisition: Mitigating Risks to Enterprise

The May 15-17 DHS Software Assurance Working Group will include a day
on the "assurance" case/argument (https://buildsecurityin.us-cert.gov)

13

DHS SwA – People Focus
Provide Guide to Software Assurance (SwA) Common Body of
Knowledge (CBK)

Serves as a framework to identify workforce needs for competencies and
leverage standards and “best practices” to guide software-related curriculum
development
Addresses three domains: “acquisition & supply,” “development,” and “post-
release assurance” (sustainment)
Draft v1.1 distributed on 25 Sep 2006 for review and comment
Draft content now being used by early adopters in graduate level courses in
secure coding/programming and NDU Information Resource Management
College (IRMC) CISO Certificate Program course on SwA

Plans:
Next SwA CBK draft with “guiding principles” to be released May 2007
Develop pilot training/education curriculum consistent with CBK in conjunction
with early adopters for distribution by September 2007
Provide input to IT Security Essential Body of Knowledge (EBK)

14

DHS SwA – Process Focus
Provide Software Assurance (SwA) Developers’ Guidance

Provided practical guidance via “Build Security In” on US-CERT web site with
regular updates based on feedback from stakeholders
Provided draft developers guide, “Securing the Software Lifecycle: Making
Application Development Processes – and Software Produced by Them – More
Secure” for public review and comment (draft v1.1 released July 2006)

Plans:
Continue to provide periodic updates to https://buildsecurityin.us-cert.gov
Released developers’ guide, draft v1.2 in March 2007 reflecting review comments
In collaboration with federal agencies, standards bodies, industry and academia:

– provide draft guidance for specifying ‘assurance arguments’ from which to base
claims about the safety, security and dependability of software – draft v0.5 to be
released September 2007 for review and comment

– Provide recommended changes to national and international standards on
software testing and software assurance – via ongoing work and liaison with
IEEE CS S2ESC, ISO/IEC JTC1 SC7/SC27/SC22, OMG, CNSS, and NIST

https://buildsecurityin.us-cert.gov/

15

DHS SwA – Technology Focus
Provide SwA Technology Lifecycle Support Guidance

Sponsor work with NIST to inventory and measure effectiveness of SwA tools
Sponsor public-private work to provide a common dictionary of software weaknesses
(CWE) - primarily those that can be discovered by tools
Provide common attack pattern enumeration (CAPEC) from which developers and users
can understand the resilience of software relative to use, abuse and misuse.
Provide SwA Measures to support decision making throughout the software lifecycle
Provided draft SwA Landscape document, including organizing mechanisms for SwA
ecosystem infrastructure, from which to clarify and specify interfaces and interoperability
among various SwA initiatives

Plans
NIST Special Pub 500-268, “Source Code Security Analysis Tool Functional Spec”
NIST Special Pub 500-269, “SwA Tools: Web Application Scanner Functional Spec”
NIST Special Pub 500-270, “Source Code Security Analysis Tool Test Plan”
In collaboration with NIST, provide a Test Case Generator from which to evaluate SwA
tool compatibility and effectiveness – demonstrated in March 2007
Provided in March 2007 for review draft v1.0 SwA Measurement Guide, “Practical
Guidance for Software Assurance and Information Security Measurement”

A SwA Ecosystem Demonstration will be held the evening of March 7th during the OMG SwA Workshop
Reception that is open to those attending either the OMG SwA Workshop (March 5-7) or the SwA Forum
(March 8-9). It will include a demo of the Test Case Generator being co-sponsored by DHS and NIST.

16

DHS SwA – Acquisition Focus
Provide Software Assurance (SwA) Acquisition Guidance

Provided draft Acquisition Management guidance focused on enhancing supply
chain management through improved risk mitigation and contracting for secure
software
Collaborated on “due diligence” questionnaires for RFI/RFP and source selection
decision making
Drafted templates and sample statements of work / procurement language for
acquisition and evaluation based on successful models
Collaborated with agencies implementing changes responsive to the Federal
Acquisition Regulation (FAR) IT security provisions of FISMA when buying goods
and services and new core competency of “Software Acquisition Management”
identified by Federal CIO Council’s IT Workforce Committee

Plans:
Publicly release acquisition guide, draft v1.0, “Software Assurance (SwA) in
Acquisition: Mitigating Risks to the Enterprise” in March 2007

17

Disciplines Contributing to Software Assurance*

In Education and Training, Software Assurance could be addressed as:
• A “knowledge area” extension within each of the contributing disciplines;
• A stand-alone CBK drawing upon contributing disciplines;
• A set of functional roles, drawing upon a common body of knowledge; allowing more
in-depth coverage dependent upon the specific roles.

Intent is to provide framework for curriculum development and evolution of contributing BOKs

Safety &
Security

Project Mgt

Software
Acquisition

Software
Engineering

Software
Assurance

Systems
Engineering

Information
Assurance

* All require Measurement; see ‘Notes Page’ view for contributing BOK URLs and relevant links

*Info Systems
Security Eng

*Test &
Evaluation

The intent is not to create a new profession of Software Assurance; rather, to provide a common body of knowledge: (1)
from which to provide input for developing curriculum in related fields of study and (2) for evolving the contributing
disciplines to better address the needs of software security, safety, dependability, reliability and integrity.

18

SwA Efforts in Context

19

DHS Software Assurance Outreach Services
Co-sponsor bi-monthly SwA WG sessions and
semi-annual Software Assurance Forum for
government, academia, and industry to facilitate the
ongoing collaboration -- next Oct 2007

Sponsor SwA issues of CROSSTALK (Oct 05, Sep
06, Mar 07); provide SwA articles in other journals
to “spread the word” to relevant stakeholders

March 2007 issue on “Software Security”

Future issues on Software Acquisition, SOA, etc

Provide free SwA resources via “BuildSecurityIn”
portal to promote relevant methodologies

Provide DHS Speakers Bureau speakers

Support efforts of consortiums and
professional societies in promoting SwA

20

What if…
Government, in collaboration with industry / academia, raised expectations
for product assurance with requisite levels of integrity and security:

Helped advance more comprehensive software assurance diagnostic capabilities to mitigate
risks stemming from exploitable vulnerabilities and weaknesses;
Promoted use of methodologies and tools that enabled security to be part of normal business.

Acquisition managers & users factored risks posed by the supply chain as
part of the trade-space in risk mitigation efforts:

Information on suppliers’ process capabilities (business practices) would be used to
determine security risks posed by the suppliers’ products and services to the acquisition
project and to the operations enabled by the software.
Information about evaluated products would be available, along with responsive provisions for
discovering exploitable vulnerabilities, and products would be securely configured in use.

Suppliers delivered quality products with requisite integrity and made
assurance claims about the IT/software safety, security and dependability:

Relevant standards would be used from which to base business practices & make claims;
Qualified tools used in software lifecycle enabled developers/testers to mitigate security risks;
Standards and qualified tools would be used to certify software by independent third parties;
IT/software workforce had requisite knowledge/skills for developing secure, quality products.

www.us-cert.gov

Joe Jarzombek, PMP
Director for Software Assurance
National Cyber Security Division
Department of Homeland Security
Joe.Jarzombek@dhs.gov
(703) 235-5126

Software Assurance Working Group Sessions every two months --
Next SwA Forum 2-3 Oct 2007 at Hilton, McLean, VA

http://buildsecurityin.us-cert.gov

Questions?

22

- - - - - - - -
Back-up Slides

Reaching Relevant Stakeholders
Leverage Evolving Efforts in Universities, Standards Organizations & Industry

• Curriculum
• Accreditation Criteria

• Continuing Education
• Certification

• Standards of Practice
• Training programs

Education Professional
Development

Training and
Practices

CNSS IA Courseware Eval

IEEE/ACM SW Eng 2004
curriculum

AACSB & ABET
AIS IS & MSIS curriculum

Certified SW Development
Professional (CSDP), IEEE

IEEE CSDP Prep Course

IEEE CS SWE Book Series

IEEE CS SW & Systems
Engineering Standards

Committee (S2ESC)
ISO/IEC JTC1/SC7/ SC27/

SC22 and other committees

Industry
acceptance

Individual
acceptance

University
acceptance

23

Adopted from “Integrating Software Engineering Standards” by IEEE Computer Society
Liaison to ISO/IEC JTC 1/SC 7, James.W.Moore@ieee.org, 23 February 2005

mailto:James.W.Moore@ieee.org

Bi-Monthly Software Assurance (SwA) Working Groups:
Next WG sessions held May 15-17, 2007 – Next SwA Forum 2-3 Oct 2007

Tuesday, May 15th Wed, May 16th Thursday, May 17th

Session 1:
Technology, Tools &
Product Evaluation

Working Group

Session 6:
Processes & Practices

Working Group on
“Argument/Case”

Session 2:
Business Case
Working Group

Session 7:
Acquisition and

Measurement WGs

Session 1:
Technology, Tools &
Product Evaluation

Working Group

Session 4:
Malware

Working Group

Session 6:
Processes & Practices

Working Group on
“Argument/Case”

Session 3:
Workforce Education &
Training Working Group

Session 5:
Acquisition

Working Group

Session 7:
Measurement Working

Group

Afternoon
1pm - 5pm

Plenary Session
Morning
9:00am -
11:30am

https://us-cert.esportals.net/Presentations from previous SwA WGs and Forums are on US-CERT Portal ()
under the appropriate Working Group in the Library folder. Access to WG folder is restricted to those who
have participated in the WG. Contact DHS NCSD if you do not yet have access to the appropriate folders.

https://us-cert.esportals.net/

25

Build Security In (BSI) on US-CERT
Summary - Trend

Increased Use:
In Jan 07 BSI had 14,848 Unique Visitors, an increase of 3,859
Page Views count during the month of December increased by 48,268 hits.

Top Documents for Jan 07
Most viewed content area for January was again ‘Coding Practices’
(‘Knowledge’ Category) with 1,254 views -- shows an increase of 349 hits
compared to the December data.
For ‘Best Practices’ Category – White Box Testing, Deployment &
Operations and Architectural Risk Analysis ranked as the most viewed
content areas.
For ‘Tools’ Category - Black-Box Testing was again the most viewed content
area.

26

“Build Security In” SwA on US-CERT
Top Documents – What are BSI Visitors finding?

January 20071254

774

621

416
387 385

362 353 346 339

0

200

400

600

800

1000

1200

1400

Coding
Practices

SDLC
(Process)

White Box
Testing

Black Box
Testing

Deployment &
Operations

Architectural
Risk Analysis

Requirements
Engineering

Governance &
Management

Risk
Management

Security
Testing

Know ledge Know ledge Best Practices Tools Best Practices Best Practices Best Practices Best Practices Best Practices Best Practices

Jan-07

Visits

Jan 07

27

SwA Concerns of Standards Organizations

JTC1
Information
Technology

TC176 TC56 TC65

TMB
ISO IEC

SC7 SC27

Risk Mgmt
Vocabulary

Dependability

IT Security

Quality Mgmt Safety

SW & System
Engineering

SC22

Programming
Languages

Advisory
Group on
Security

* DHS NCSD has membership on SC7, SC27 & IEEE S2ESC
leveraging Liaisons in place or requested with other committees

28

Leveraging US & International Efforts
ANSI

IEEE CS
SAB

IEEE
Computer

Society

IEEE
Standards

Assn

IASC S2ESC

IEEE
Reliability

SocietyISO/IEC ANSI
Accreditation

NIST

Open
Group

Category A
Liaison to
SC7

OMG

CNSS Membership
in US TAG to
SC7

Information
Assurance

Software and
Systems

Engineering

Committee on Nat’l
Security Systems

29

Some Current Efforts of NCSD SwA Working with
Standards Organizations

IEEE S2ESC
Develop criteria for assurance case / argument
Use as an “integrator” of standards for packaging / transition to industry.

ISO SC7
Incorporate “raise the floor” assurance practices into life cycle standards.
Incorporate “raise the ceiling” practices into separate standards strongly
related to the life cycle standards.
Use Safety & Security practices as a benchmark for measuring success.

ISO SC22
Develop coding guidelines for common programming languages.
WG established to identify secure constructs in languages

ISO SC27
Expand context to include assurance concerns.

Key Standards for Software & System Processes

ISO/IEC 15288, System Life Cycle Processes
25 processes spanning the life cycle of a system.
The standard is primarily descriptive.

ISO/IEC 12207:1995, Software Life Cycle Processes
17 processes spanning the life cycle of a software product or service.
The standard is somewhat prescriptive in defining a minimum level of responsible practice.
Describes processes meeting the needs of organizational process definition.

ISO/IEC 12207:Amd 1
Describes processes to meet the needs of process assessment and improvement.

ISO/IEC 15026, Integrity Levels Assurance
Describes additional techniques needed for high-integrity systems.
Currently, not process-oriented, but is being repositioned.

ISO/IEC 16085, Risk Management Process

ISO/IEC 15939, Measurement Process

Other standards treating specific processes in greater detail

30

Scope of ISO/IEC JTC1 SC7
“System and Software Assurance”

“System and software assurance focuses
on the management of risk and assurance
of safety, security, and dependability
within the context of system and
software life cycles.”
Terms of Reference changed: ISO/IEC JTC1/SC7 WG9, previously
“System and Software Integrity”

“System and software assurance focuses
on the management of risk and assurance
of safety, security, and dependability
within the context of system and
software life cycles.”
Terms of Reference changed: ISO/IEC JTC1/SC7 WG9, previously
“System and Software Integrity”

Adopted from Paul Croll’s SSTC May 2005 presentation, “Best Practices for Delivering Safe,
Secure, and Dependable Mission Capabilities”

“Safety & Security Extensions for Integrated
Capability Maturity Models” – Input to SC7

Source: United States Department of Defense and
Federal Aviation Administration joint project on, Safety
and Security Extensions for Integrated Capability
Maturity Models, September 2004

1. Ensure Safety and Security Competency

2. Establish Qualified Work Environment

3. Ensure Integrity of Safety and Security Information

4. Monitor Operations and Report Incidents

5. Ensure Business Continuity

6. Identify Safety and Security Risks

7. Analyze and Prioritize Risks

8. Determine, Implement, and Monitor Risk Mitigation Plan

9. Determine Regulatory Requirements, Laws, and Standards

10. Develop and Deploy Safe and Secure Products and Services

11. Objectively Evaluate Products

12. Establish Safety and Security Assurance Arguments

13. Establish Independent Safety and Security Reporting

14. Establish a Safety and Security Plan

15. Select and Manage Suppliers, Products, and Services

16. Monitor and Control Activities and Products

www.faa.gov/ipg

From synthesis and harmonization of practices from 8 standards (4 on security and 4 on safety)

ISO/IEC SC7 Framework for System & SW Assurance

ISO/IEC JTC1 SC7 – System and Software Assurance
Interface with ISO/IEC Standards – Assurance Case/Argument
• Describes interfaces/
amplifications to the
Technical & Management
processes of ISO/IEC
15288 System Lifecycle &
12207 Software Lifecycle
• Describes interfaces/
amplifications to ISO/IEC
16085 Risk Management
Process and 15939
Measurement Process
and ISO/IEC 27004
Security Metrics
• Establishes centrality of
the Assurance Argument
•Leverages IT security
concepts and terminology
in ISO/IEC15443
• Leverages OMG’s ADM
Task Force – Knowledge
Discovery Meta-model

Assurance Case
- Argument

Source: ISO/IEC 15026-D4, JTC1, SC7, WG9 (currently in the process of modifying the context interrelationships)

The Assurance Case/Argument –
Requires Measurement

Set of structured assurance claims, supported by evidence and reasoning,
that demonstrates how assurance needs have been satisfied.

Shows compliance with assurance objectives
Provides an argument for the safety and security of the product or service.
Built, collected, and maintained throughout the life cycle
Derived from multiple sources

Sub-parts
A high level summary
Justification that product or service is acceptably safe, secure, or dependable
Rationale for claiming a specified level of safety and security
Conformance with relevant standards and regulatory requirements
The configuration baseline
Identified hazards and threats and residual risk of each hazard and threat
Operational and support assumptions

*Adopted from Paul Croll, ISO SC7 WG9 Editor for Systems and Software Assurance

The Assurance Case/Argument

A coherent argument for
the safety and security of
the product or service

A set of supporting
evidence

…
…

Part 1

Part 2

Structure

Software
Artifact

Assurance
Cases

Attributes

Clear
Consistent
Complete
Comprehensible
Defensible
Bounded
Addresses all life cycle stagesSoftware Assurance Meta-model

Human-generated Machine-generated

Risks

Assurance
Claims

Consequences

*Adopted from ISO/IEC JTC1 SC7 and OMG SwA

Partition of Concerns in Software-Intensive Systems
Structure

Design

Data

Behavior

Implementation

Architecture

Domain model

Use Case Model

Architecture model

Threats

& Hazards
Attack Vectors

Failures

Considerations for Assurance Arguments:
-- What can be understood and controlled (failures & attack surface/vectors)?

-- What must be articulated in terms of “assurance” claims
and how might the bounds of such claims be described?

From facilitated discussions in SwA WG on Practices and Processes, Aug & Nov 2005

Safety: Sustaining predictable,
dependable execution in the face of
unpredictable but unintentional
faults (hazards)
Security: Sustaining predictable,
dependable execution in the face of
intentional attacks (threats)

Attack Surface

38

Questions the following slides should
answer:

What do we mean by “secure software”?

What are the threats to all software?

What makes software vulnerable to those threats?

How does the way software comes into existence affect its
security?

What techniques and tools can be used to produce (more)
secure software?

What resources are available to help developers produce
secure software?

39

Why care?
Software is everywhere.
It isn’t just applications. It’s also…

operating systems
frameworks and middleware
security systems
communications/networking systems
Embedded systems
firmware (like software, it’s executable, readable, and writeable)

SOA implemented in and dependent on software
Software monitors and controls life-critical physical systems.
Software manipulates, protects, and exposes extremely
sensitive information.
Software is itself protected by other software.
The vast majority of software is not “built from scratch”.

40

What threatens software?
External threats

Human attackers
Malware

Insider threats
Rogue developers
Rogue administrators
Rogue users

Embedded threats
Exploited backdoors
Malware

– #1 TARGET FOR ALL THREATS

– Design defects and implementation
flaws that manifest as exploitable
weaknesses and vulnerabilities

How is software threatened?
in development

By developers who, through ignorance, carelessness, or intention,
sabotage or subvert the software by…

Including weaknesses and vulnerabilities, due to…
failure to consider the threat environment and its implications (e.g.,
inadequate or inaccurate threat models, misuse/abuse cases, etc.)
poor design choices
use of non-secure technologies (e.g., unsecured HTTP and SOAP)
unsafe programming practices, languages, libraries, tools
coding errors
inadequate non-functional security assessments and tests, or intentionally
“fudged” results

Leaving in backdoors, trapdoors, debugging hooks
Embedding malware (time and logic bombs, Trojan horses, etc.)
Including undocumented features/functions (“rotten Easter eggs”)

Non-secure configuration management practices
make the above easier to accomplish.

42

How is software threatened?
in distribution and deployment

“Insiders” (developers, shippers, admins.) who, through
ignorance, carelessness, or intention, sabotage or subvert the
software by…

Not applying integrity mechanisms to executables (e.g., code signatures,
digital watermarks)
Not using secure download channels (e.g., authenticated SSL)
Failing to ship on tamperproof media
Tampering with executables before shipping or installing
Misconfiguring the software and its environment upon installation
Planting rootkits/malware in install. package and/or host platform
Failing to apply security patches to COTS and OSS components

External attackers who intercept and tamper with software
downloads/distributions

43

How is software threatened?
in operation

Direct attack by human attackers or malicious processes

Abuse of privileges by intended users, operators,
administrators

Non-secure administration, e.g., failure to patch

Delivery of malware (Trojan horses, worms, viruses, etc.)

44

But we’re not connected to the Internet!

If software interacts with anything — human,
other software — through any kind of interface,

its weaknesses and vulnerabilities will be
exposed and may be exploited.

45

Attack patterns

Direct attacks: Target known or suspected weaknesses and
vulnerabilities in the software itself

Indirect attacks: Target…
the software’s interfaces to other software
faults at the boundary between the software and its execution
environment
environment parameters provided to the software
execution environment resources on which the software depends
(objective: denial of service)
defense in depth measures protecting the software

46

Categories of attack patterns
Reconnaissance

Privilege escalation (subversion)

Command injection (subversion)

Malicious code (subversion or sabotage)

Denial of service (sabotage)

Integrity violation (subversion)

Confidentiality violation (sabotage)

47

What makes software vulnerable?
It’s big and complicated, and getting more so – humans can
no longer fully comprehend it.

Component-based development: COTS, OSS, and reuse
means no-one really knows where most of it comes from, or
how it was built.

It contains lots of faults and weaknesses. Many of these are
exploitable.

It comes in binary executable form, which makes finding those
faults and weaknesses a lot harder.

It’s exposed to threats all the time, even while it’s under
development.

48

Where weaknesses and vulnerabilities originate
during development

Inadequate or spurious requirements
Inadequate architecture, assembly option, detailed design
Use of vulnerable processing models, software technologies
Insecure use of development tools, languages, libraries
Use of insecure development tools, languages, libraries
Poor coding practices
Coding errors
Use of vulnerable, unpatched components
Incorrect or mismatched security assumptions
Inadequate reviews, testing, assessments
Sabotaged test results
Residual backdoors
Sensitive info about software problems in user-viewable code, error
messages
Inadequate configuration documentation
Insecure installation procedures, scripts, tools

49

Malicious Code
embedded during development

Trojan horses
Seems to do one thing, but actually does another

Time bombs
Execution is triggered at a predefined time (on computer clock)

Logic bombs
Execution is triggered by a predefined event, input, or geospatial
condition

Malicious undocumented functions (“rotten Easter eggs”)

Hard Problem:
Software of Unknown Pedigree (SOUP)

December 1999: Defense Science Board Task Force on Globalization and Security
cites “Vulnerability of essential U.S. systems incorporating commercial software”.

July 2003: The New York Times announces “ Uneasiness about security as
government buys software.”

May 2004: GAO publishes Defense Acquisitions: Knowledge of Software Suppliers
Needed to Manage Risk

June 2004: IDG News Service reports “Security vendor says offshore development
needs check. Extra steps called for to ensure secure code.”

2005/2006: GAO highlights risks of offshoring to firms in ambivalent and even hostile
countries in Offshoring of services: an overview of the issues (Nov. 2005) and
Offshoring: U.S. semiconductor and software industries increasingly produce in
China and India (Sep. 2006)

2006: ACM publishes Globalization and Offshoring of Software, citing risks to
national security from government use of offshored software. #1 Risk: difficulty
understanding code pedigree could allow hostile nations, terrorists, criminals to
subvert or sabotage software in government systems.

November 2006: Computerworld announces “DOD report to detail dangers of foreign
software. Task force says U.S. adversaries may sabotage code developed
overseas.”

March 2007: CSIS publishes Foreign Influence on Software: Risks and Recourse.

While foreign development risks need domestic mitigation strategies, several studies
indicate that domestic suppliers are likely to produce exploitable software unless they
put security practices in place throughout the software development life cycle.

51

Where vulnerabilities originate
during deployment and operation

Insecure configuration of software and its environment

Inadequate allocation of resources

Failure to apply patches

Software “ageing”

52

Secure software...
Preserves all of its required properties in the face of threats to
those properties

Dependability is the #1 desirable property for all software

– If it doesn’t work correctly and predictably at all times, what good is it?

Can resist and/or tolerate most threats that attempt to subvert
or sabotage it

Can terminate, limit the damage, and rapidly recover from the
few that succeed

53

Dependability properties
Quality (correctness and predictability)

Reliability

Fault-tolerance

Trustworthiness

Safety (the above intensified: the software’s failure would
threaten human life, health, or sustainability of environment)

Security (integrity, availability, confidentiality against
reconnaissance)

Assurability

54

What makes software secure?
Attack-resistance

Components and system recognize and resist attack patterns.
System recognizes suspicious component behaviour and
– isolates/constrains that behavior, or
– terminates execution of the component

Attack-tolerance
Components keep operating in spite of errors caused by attack
System keeps operating in spite of attack-caused component
errors/failures

Attack-resilience
System constrains damage from attacks, isolates itself from attack
source
System rapidly recovers (to acceptable performance level)

55

Security throughout the life cycle
Security-enhancing process improvement model

e.g., FAA iCMM/CMMI safety & security extensions, SSE-CMM

Security-enhancing life cycle methodologies
e.g., CLASP, SDL, McGraw’s 7 Touchpoints, TSP-Secure, AEGIS, RUPSec, SSDM, Oracle
Secure SW Assurance, Waterfall-Based SW Security Engineering Process

Establishing security entry and exit criteria for each life cycle phase
Including appropriate and sufficient security reviews, analyses,
tests at each phase

e.g., threat models, attack trees, vulnerability analyses, code reviews, black box tests, risk
analyses, assurance cases

Secure SCM
Education, training, awareness, professional certification
QA of security of software processes and practices

56

Secure requirements engineering
Risk-driven vs. functionality-driven:

non-functional requirements (what software must be, vs. what it must
do)
constraint requirements
negative requirements

– Need to allow time for translating these into requirements for
functionality (what can be built/tested)

e.g., no buffer overflows = must do input validation; must be fault-tolerant =
must have exception handling that...)

57

Reducing SW security risk: acquisition
Include security requirements and evaluation criteria in all RFPs

Strict monitoring/control of “non-traditional” acquisitions (e.g., OSS,
shareware, freeware downloads)

Supplier and integrator background checks (COTS)

Supplier and integrator SDLC process reviews/capability assessments
with security criteria

Procurement and contract language requiring COTS suppliers to
warrant safe, secure product behaviour

Code analysis and assessment of products for known and common
vulnerabilities before purchase (COTS) or download (OSS, freeware)

Pedigree analysis: in an ideal world, acquisition policy would favor
software with known pedigree

58

Technological pre-commitments
Commitments to use specific technologies and products are
increasingly made at the enterprise level, then backed up by policy.
Requirements of individual systems are seldom considered.
Software and system engineering become exercises in working
around undesirable features and properties.

Requirements have to be written in ways that ensure they can be satisfied within
the constraints imposed by technological pre-commitments.
Additional requirements must be added to mitigate known vulnerabilities and
security mismatches that use of pre-committed technologies/products introduce.

Thorough, iterative risk analyses throughout system lifecycle should
capture unacceptably high cost of workarounds and
countermeasures, make case for waiving pre-commitments to high-
risk technologies/products.

59

What does Common Criteria evaluation
say about software’s security?

It doesn’t look at the right products.

Products without significant security functionality are not eligible for CC
evaluation.

The questions it asks are not adequate to determine whether
software is secure

Focus of CC evaluations is on correctness and security policy
conformance of TOE’s security functions and controls.

Little if any CC language addresses software security concerns.

– Software assurance language was added to draft CC v.3.
ISO/IEC period for considering draft expired before v.3 adoption

60

What does Common Criteria evaluation
say about software security? cont’d

It doesn’t look at the product in helpful ways.

CC evaluation is based predominantly on documentation analysis.

Direct testing of TOE limited to correctness of security functions.

It doesn’t adequately address the product’s development
process.

No rigour in product security engineering required below EAL5.

No formal methods are required until EAL7.

– Most products are evaluated at EAL4 or below.

61

Reducing SW security risk: source selection
Analyze security of each item to be purchased/licensed to determine
feasibility of its use in the intended system and environment:

Code reviews, vulnerability assessments
Select item only if there are feasible, affordable countermeasures for its vulnerabilities

Identification of security assumption mismatches: what the software
actually expects (of its environment, etc.) and does, vs. what it will
actually be provided and how it will be used

Select item only if there are feasible, affordable workarounds or countermeasures for
its security assumption mismatches

Evaluate security evidence: vulnerability/incident reports, patch history;
C&A documents, CC evaluation reports; relevant standards
conformance; supplier reputation, track record, development process,
willingness to warrant security.

In future, software security assurance cases will make this type of evaluation easier

62

Secure software architecture and design
System processing model doesn’t preclude secure behaviors,
interactions

Minimisation of vulnerabilities—quantity and exposure—through
security measures and countermeasures (discussed later)

Secure intercomponent and extrasystem interfaces (APIs, RPCs, UIs)
Prevents excessive trust in high risk (including SOUP) components

Absolutely minimises privileges granted to all processes/components at
all times

Isolates and constrains environment in which high-risk software
operates

Minimises untrusted software access to/interaction with trusted
software

63

Secure software architecture and design
cont’d

Addresses mismatches in components’ assumptions about each
other:

Component A may expect Component B to provide certain
– functionality (e.g., signature validation)
– properties (e.g., fault tolerance)
– outputs (format, length, etc.)
– interfaces (APIs, RPCs, protocols)

Addresses inaccurate assumptions about the environment:

Component may expect the execution environment to provide
– certain functionality (e.g., PKI)
– certain protection (e.g., sandboxing)
– certain inputs (i.e., environment parameters

64

Security issues of component-based
software

Mismatches in component assumptions about each other and
execution environment: Component may expect…

certain functionality in another component (e.g., signature validation)
certain functionality in the environment (e.g., PKI)
certain properties in other components (e.g., fault tolerance)

65

Sources of inaccurate assumptions
Incomplete, omitted, overly-general, or poorly-stated functionality-
constraining and nonfunctional property requirements

Failure to translate such requirements into actionable requirements

Architecture and design that do not satisfy their actionable non-
functional (property) and negative (constraint) requirements

Ignoring the security implications of different languages, tools, and
technologies, and how they are used in implementing the software

Failure to evaluate security of non-developmental components,
alone and in combination with other components, before selection

Security reviews/tests not included in each SDLC phase

66

Sources of inaccurate assumptions (cont’d)

Test cases limited to normal operating conditions

Lack of risk-driven security testing, i.e., abnormal conditions,
test cases based on attack patterns

Lack of stress testing, i.e., abnormal activity, inputs, etc. to
validate design assumptions

Inadequate preparation of the software for
distribution/deployment

No verification that security standards have been conformed
to

Software design does not match intended operational
environment

67

SOUP = inaccurate security assumptions
Unable to infer component trustworthiness from knowledge of
development process

Unable to infer component trustworthiness from supplier reputation

Disjoint product and patch release schedules

Disjoint supplier priorities vs. system requirements

Publishing of known vulnerabilities: attackers know at least as much
as system developers

Attackers don’t care about license Ts&Cs “preventing” reverse engineering,
which means they probably know much more.

Potential hostile foreign influence on offshore developers may result
in products with embedded malicious code, rotten Easter eggs,
intentional vulnerabilities

68

Reduce SOUP risk: architecture
Define different candidate system architectures in which to
evaluate components, model component risks

include threat, attack, vulnerability modeling for each candidate
architecture
evaluate both architecture and components together
– architecture provides framework for revealing intercomponent

behaviors, assumption (mis)matches
– candidate components verify security of architecture-defined

component combinations, configurations, process flows

69

Secure implementation and testing
Secure coding practices supported by tools
Write, acquire, reuse only components proven dependable,
free of exploitable faults and weaknesses
Security testing

White box:
– static and dynamic code analysis
– fault injection/propagation analysis

Black box
– fault injection
– fuzzing
– penetration testing
– vulnerability scanning

70

Reduce SOUP risk:
testing, risk management

Black box—and when source code is available, white box—
security testing

individual components
pairs of components
whole system

Ongoing risk analysis and reengineering
find known-pedigree components with req’d capabilities to replace
SOUP
redesign system so SOUP components’ capabilities are no longer
needed
apply new countermeasures to further reduce SOUP component risk

71

Secure distribution, deployment, sustainment

Trusted distribution techniques
code obfuscation
digital watermarking
code signing
authenticated, encrypted download channels

Installation configuration that ensures
secure interactions with execution environment
adequate allocation and safe management of environment resources

Sustainment and support
impact analyses of new requirements, own and supplier updates,
patches
ongoing risk assessment to identify new requirements
forensic analysis (post-incident) to identify new requirements

72

SW security measures and countermeasures
Programmatic

input and output validation wrappers
obfuscation (to deter reverse engineering)
secure exception handling (in custom software)
fault tolerance measures
– redundancy
– diversity (redundancy using different components with comparable

functions)

73

Security measures and countermeasures cont’d
Development tools and languages

type-safe languages
safe versions of libraries
secure compilers
secure compilation techniques

Environment-level measures
virtual machines/sandboxes
chroot jails
trusted OS with mandatory integrity policy/compartments
secure microkernels
TPMs
program shepherding
altered memory maps
system call filters

74

Security measures and countermeasures cont’d
Add-ons

code signing with signature validation
obfuscation and digital watermarking (to deter reverse engineering)
malware/spyware scanners (host level)
application security gateways/firewalls
intrusion detection/prevention (network and host based)

Development process (see Security in the Software Life Cycle)

75

Resources
US-CERT BuildSecurityIn portal

https://buildsecurityin.us-cert.gov/

K.M. Goertzel, et al: Security in the Software Life Cycle Draft
Version 1.2 (DHS CS&C NCSD Software Assurance Program,
September 2006) – new version planned for 2007

NIST SAMATE portal

http://samate.nist.gov/

	Cyberspace & physical space are increasingly intertwined and software controlled/enabled
	Cyber-related Disruptions and the Economy
	Why Software Assurance is Critical
	How is software threatened or put at risk of exploitation in development?
	Where weaknesses and vulnerabilities originateduring development
	DHS Software Assurance Program Overview
	SW Assurance related to Engineering Disciplines
	Security in the Software Life Cycle: Informed development and supply chain management
	Enhance “Assurance” Considerations:Leveraging CMM-based Process Improvement
	DHS Software Assurance Program Structure *
	DHS Software Assurance (SwA) Program …
	DHS SwA – People Focus
	DHS SwA – Process Focus
	DHS SwA – Technology Focus
	DHS SwA – Acquisition Focus
	Disciplines Contributing to Software Assurance *
	SwA Efforts in Context
	DHS Software Assurance Outreach Services
	What if…
	Questions?
	Reaching Relevant Stakeholders
	Bi-Monthly Software Assurance (SwA) Working Groups: Next WG sessions held May 15-17, 2007 – Next SwA Forum 2-3 Oct 2007
	Build Security In (BSI) on US-CERTSummary - Trend
	“Build Security In” SwA on US-CERTTop Documents – What are BSI Visitors finding?
	SwA Concerns of Standards Organizations
	Leveraging US & International Efforts
	Some Current Efforts of NCSD SwA Working with Standards Organizations
	Key Standards for Software & System Processes
	“System and software assurance focuses on the management of risk and assurance of safety, security, and dependability within t
	“Safety & Security Extensions for Integrated Capability Maturity Models” – Input to SC7
	ISO/IEC JTC1 SC7 – System and Software AssuranceInterface with ISO/IEC Standards – Assurance Case/Argument
	The Assurance Case/Argument – Requires Measurement
	The Assurance Case/Argument
	Partition of Concerns in Software-Intensive Systems
	Questions the following slides should answer:
	Why care?
	What threatens software?
	How is software threatened?in development
	How is software threatened?in distribution and deployment
	How is software threatened?in operation
	But we’re not connected to the Internet!
	Attack patterns
	Categories of attack patterns
	What makes software vulnerable?
	Where weaknesses and vulnerabilities originateduring development
	Malicious Codeembedded during development
	Hard Problem: Software of Unknown Pedigree (SOUP)
	Where vulnerabilities originateduring deployment and operation
	Secure software...
	Dependability properties
	What makes software secure?
	Security throughout the life cycle
	Secure requirements engineering
	Reducing SW security risk: acquisition
	Technological pre-commitments
	What does Common Criteria evaluation say about software’s security?
	What does Common Criteria evaluation say about software security? cont’d
	Reducing SW security risk: source selection
	Secure software architecture and design
	Secure software architecture and design cont’d
	Security issues of component-based software
	Sources of inaccurate assumptions
	Sources of inaccurate assumptions (cont’d)
	SOUP = inaccurate security assumptions
	Reduce SOUP risk: architecture
	Secure implementation and testing
	Reduce SOUP risk: testing, risk management
	Secure distribution, deployment, sustainment
	SW security measures and countermeasures
	Security measures and countermeasures cont’d
	Security measures and countermeasures cont’d
	Resources

