
IBM Software Group

®

(C) Copyright IBM Corporation 2005 All Rights Reserved.

Myths and RealityMyths and Reality
of Iterative Testingof Iterative TestingLaura Rose

IBM Software Group | Rational software

2 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Myths

Prototyping reduces project risk
Testing early increases delivery to market
You can’t test without a product
Increased productivity through specialization
Programmers program, testers test
Need stable requirements
Can reduce test time to get back on schedule
Finding and fix all defects creates a quality product
Regression testing assures nothing is broke

http://www.mythweb.com

IBM Software Group | Rational software

3 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Myths

Works as designed
It’s an Intermittent Bug
Don’t have resources or time to test
Test in a controlled environment
Customer is always right
If we’re finding bugs, we doing important testing
Thorough testing mean 100 requirement coverage
Automate, Automate, Automate
Iterative Development doesn’t work

IBM Software Group | Rational software

4 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Best Practice of Prototyping

Bypassed normal design practices
No requirements reviews,

No design reviews

No code reviews,

No unit testing

No code inspections

No integration/functional testing

Reality: Prototyping often is production code

Tantalus

IBM Software Group | Rational software

5 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Best Practice of Prototyping

Bypassed normal design practices
No requirements reviews,

No design reviews

No code reviews,

No unit testing

No code inspections

No integration/functional testing

Reality: Prototyping often is production code

Indeterminate foundation.

Tantalus

IBM Software Group | Rational software

6 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Best Practice of Prototyping
Reality: Prototyping often is production code

Ways to Avoid
All production code needs to follow best practices
• Assure its stability, reliability, and maintainability
Use your prototype to test your development procedures

Hercules

IBM Software Group | Rational software

7 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Testing early increases delivery to market

Diagnosing and fixing defects are the bottlenecks.

Ways to Avoid
Avoid creating them
• Take requirements seriously
• Test requirement to remove ambiguity
Move the detection of problems closer to their creation
• Code inspections, code reviews, static analysis, unit

testing

Reality: Testing is not the time-consuming activity in a
development lifecycle

Sisyphus

IBM Software Group | Rational software

8 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Requirement Review Checklist

List of attributes to test against:
Complete. Is anything missing or forgotten? Is it thorough? Does it
include everything necessary to make it stand alone?
Accurate: Is the proposed solution correct? Does it properly define the
goal? Are there any errors?
Precise, Unambiguous, and Clear. Is the description exact and not
vague? Is there a single interpretation? Is it easy to read and understand?
Consistent. Is the description of the feature written so that it doesn’t
conflict with or other items in the specification?
Relevant. Is the statement necessary to specify the feature? Is there
extra information that should be left out? Is the feature traceable to an
original customer need?
Feasible. Can the feature be implemented with the available personnel,
tools, and resources within the specified budget and schedule?
Code-free. Does the specification stick with defining the product and not
the underlying software design, architecture and code?
Testable. Can the feature be tested? Is enough information provided that
a tester could create tests to verify its operation?

TestTest

Software Testing by Ron Patton.

IBM Software Group | Rational software

9 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Problem Words in a specification:
Always, Every, All, None, Never: If you see words such as these that denote
something as certain and absolute, make sure that it is indeed certain. Think of
cases that violate them, when reviewing the spec.
Certainly, Therefore, Clearly, Obviously, Ordinarily, Customarily, Most,
Mostly. These words tend to persuade you into accepting something as a given.
Don’t fall into the trap.
Some, sometimes, Often Usually, Ordinarily, Customarily, Most, Mostly:
There words are too vague. It’s impossible to test a feature that operates
“sometimes”.
Etc, And So Forth, And So On, Such As. Lists that finish with these words aren’t
testable. There needs to be no confusion as to how the series is generated and
what appears next in the list.
Good, Fast, Cheap, Efficient, Small, Stable. These are unquantifiable terms.
They aren’t testable. If they appear in a specification, they must be further defined
to explain exactly what they mean.
Handled, Processed, Rejected, Skipped, Eliminated. These terms can hide
large amounts of functionality and need to be specified.
If… Then (but missing Else). Look for statements that have “If…Then” clauses
but don’t have a matching “else”. Ask yourself what will happen if the “if” doesn’t
happen.

TestTest

Software Testing by Ron Patton.

IBM Software Group | Rational software

10 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

You can't test if you don't have a product to test

Iterative testing isn't limited to testing code
the architecture and development framework,

the design, and the customer usage flows,

the requirements, and the test plans,

the deployment structure,

the support and service techniques,

the diagnostic and troubleshooting methods,

the procedures you follow to produce the product

Ways to Avoid
Include Quality Acceptance Criteria for all deliverables

Reality: Testing isn’t limited to code

Zeus

IBM Software Group | Rational software

11 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Specialization

no one else can maintain and understand that feature
Creates bottlenecks and delays

Ways to avoid
Increase your pool of resources
• Pair programming
• pair testing,
• code reviews,
• design reviews

Reality: Huge Risk having just one developer
maintain and develop an area

Achilles

IBM Software Group | Rational software

12 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Programmers program, testers test

Ways to Avoid:
Be in the Present to avoid misplaced attention
• Emailing others during code inspections?
• Coding during requirement review meetings?
• Walking away from a test that’s running
− Miss performance issues, time delays and

pop-up errors

Reality: The primary task of everyone on the
team is to produce a product that customers
will value

Midas

IBM Software Group | Rational software

13 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Stable requirements

Ways to Avoid
Frequent customer interaction

Expect modification and course changes

Reality: Actual goal is to produce a product
that customers will value

Atlas

IBM Software Group | Rational software

14 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Reduce test time to make schedule

Delay in code delivery means we've underestimated the
project complexity,
Probably we underestimated test coverage and test effort
Slashing test time is a very poor decision

Ways to includes test time without affecting overall schedule
Testing earlier and continuously

Quality of the product determines the amount of testing

Reality: Need to increase test time

Titans

IBM Software Group | Rational software

15 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Fix all defects to create high quality product

Only 34% of all features are used by customers
Finding and fixing defects related to these features does
not add customer value

Ways to Avoid
Greenthreads or end-to-end scenario testing

Customer Interaction programs

Reality: Fixing defects isn’t an added-value
activity

Procrustes

IBM Software Group | Rational software

16 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Regression testing assures nothing is broke

Reality
Regression testing covers items you’ve already tested

You can’t test everything

Therefore, regression testing can’t assure nothing has broken
Test what makes sense in each phase and iteration

Iteration 1
Features

Iteration 2
Features

Iteration 3
Features

Final System
Regression Testing

Reality: Regression testing doesn’t assure that you haven’t
broken anything.

IBM Software Group | Rational software

17 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Regression testing assures nothing is broke
Iterative regression testing

Implement Equivalence Class Testing in your regression suite

Intelligently select the most appropriate, high profile, and
frequently encounter customer coverage paths

Sample lower risk areas across a set of iterations

Implement automation into your development organization.

Increase your confidence level in components by running them
through Code Profiling and Static Analysis tools.

Iteration 1
Features

Iteration 2
Features

Iteration 3
Features

Final System
Regression

Testing

IBM Software Group | Rational software

18 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Works as Designed

Sometimes we just know too much
Explain away the problem

Sometimes we don’t know enough
Intermittent bug

Customer is still negatively affected by the bug

Avoid
Better diagnostic and serviceability routines

Self-monitoring and self-correcting routines

Reality: Customer doesn’t care if it’s working
as you coded it.

Prometheus

IBM Software Group | Rational software

19 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Realize that if XXX isn't "because the customer wants it
this way," then XXX is irrelevant. Eliminate that
reason from the discussion and move on to the next
point.

It's working this way because XXX.

Request a full review of the design in the workflow
perspective. Walk through how the customer or role
will play out from beginning to end.

It's working as designed.

Study the documentation or usage flow. Customer
errors are often the result of some unclear and
unintuitive step. Explicitly identify the change that
needs to occur, schedule it, and set an owner.

Customer or pilot error.

Create a SWAT team that includes "outside
department" staff in addition to development staff.
Schedule a release date and owner of the change.

It's in someone else's code outside
our department.

Realize that if it has a "future consideration" tag (or
similar), it's not real. Work with tech support, field
consultants, and customers to illustrate the
importance of the bug or feature. Once the team is
assured of the customer value, schedule a release
date and owner.

It's on our list for future
consideration (with no scheduled
date).

Identify explicit things that need to be fixed by the
release date and what needs to be fixed in a
subsequent release. Identify owners and deadlines.

We already know this isn't right.

... we should ...When we encounter this
response....

IBM Software Group | Rational software

20 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

We don’t have time to test everything

Can’t test everything
Can’t test forever
Need a pragmatic approach

Avoid
Customers‘ business focus

System testing at an external customer lab

Internal deployment of your tools

Benefits
• Complex real-world environments
• no additional system admin.

Reality: We don’t need to test everything.

River Styx

IBM Software Group | Rational software

21 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Test in a controlled environment

Customer's environment is 100% controlled
do all your testing in a controlled environment

Avoid
Customer reviews of business usage

System testing at customer sites

Reality: The more the test environment resembles
the final production environment, the more reliable
the testing

IBM Software Group | Rational software

22 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

The customer is always right

All customers are equally important

Avoid
Maybe it's not the right customer….

Target specific customers

Focus on few release-defining features

Reality: You can't make everyone happy with
one release

IBM Software Group | Rational software

23 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

If we're finding a lot of bugs, we are doing important testing

Finding many bugs doesn't tell us
quality of the test coverage,

the severity of the bugs,

the frequency with which customers will actually hit them

If the workflows in a product isn’t actually used
• they don't need to work

Avoid
Incorporating both risk- and customer-based

Incorporate analysis into your test plan solution

Reality Finding a lot of bugs means the product has a lot
of bugs.

IBM Software Group | Rational software

24 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Thorough testing means testing 100% of the requirements

Test for what's missing

Avoid
Get customers involved

Reality: Testing 100% isn’t enough

IBM Software Group | Rational software

25 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Automate, Automate, Automate

If the customer uses your product in an automated environment, Automate,
Automate, Automate…..
Otherwise -- Automate judicially and with ROI in mind
Combine with

ad hoc,

exploratory,

customer scenario testing

Automate setup or breakdown of clean environments

Automate security maintenance,

Reality: The more the test environment resembles
the final production environment, the more reliable
the testing

IBM Software Group | Rational software

26 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Criteria for Automation and/or Regression Test
A test that is not planned to be run more than 3 times – is not a good candidate.

A test that can be run on multiple platforms and environment

A test that will be part of the "sanity regression suite“

Automated setup and clean exit steps

A test that resides in a "high traffic/ high code change" area

A test that resides in a code area with multiple function points (high integration
point) with more than 1 developer touching the same code.

A test that is in an area that has several defects logged against it
This includes areas that have integration points to areas that have several defects logged
against them.

Reminder:
Regression suites and retest emphasis can (and should) change depending upon
the areas of change in the product. Test Harness should be flexible enough to run
specific areas upon request (versus everything - all the time).

IBM Software Group | Rational software

27 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Best Area to Spend Automation Resources

0 10 20 30 40 50 60

Construction cycle on new design

Regression testing in new product, directly after
construction period

Regression testing in transition of new product

Regression testing in maintenance mode

Build Verification Testing

Smoke Tests on G11N platforms

How many cycles of use
Number of Users running automation
Stability of particular cycle
Ease of Implementation

55403766Total

35510515
Smoke Tests on G11N
platforms

511510125Build Verification Testing

4510101015
Regression testing in
maintenance mode

30105105
Regression testing in
transition of new product

30105105

Regression testing in new
product, directly after
construction period

75011
Construction cycle on new
design

TotalEase of ImplmtStability Number of Users #Cycles

Best Area to Spend Automation Resources

IBM Software Group | Rational software

28 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Iterative Development doesn’t work

No experience in the new approach
No gained trust.
We panic back into old habits

Ways to Avoid
Incremental success criteria at each iteration

Continuous testing and monitoring results
against exit criteria

Deliver mid-stream to customers

Reality: We don’t give it a chance to succeed.

Pan (panic)

IBM Software Group | Rational software

29 of 29
(C) Copyright IBM Corporation 2005 All Rights Reserved

Summary –

Myths are seductive
Fall prey when we’re understaffed and under pressure
More assumptions, less open to the unexpected

Rational Edge Magazine: Myths and Realities of Iterative Testing

