
Robert A. Martin

Having a Defined Target for
Software Security Testing

© 2008 MITRE

The Primary Question of Testing is

What should I test?

! For traditional testing, process is well

established (bounded by requirements)

! For security testing, the scope is not as

broadly established

© 2008 MITRE

Flavors of Software Security Testing

! Functional Security Testing

– Test the security-related features of the system

– Ensure they behave in the prescribed manner (e.g., login

features)

! Risk-Based Security Testing

– Ensure secure behavior of “other” requirements

– Testing to assure absence of vulnerabilities

– Testing negative requirements (misuse and abuse cases)

• Assure resilience to likely attacks

– Ensure security risks introduced during software

development have been effectively mitigated

© 2008 MITRE

Creating a Testing Target List

! Functional security testing is the same as traditional

testing

– Testing target list driven by requirements

! Testing to assure absence of vulnerability

– Need a resource for what weaknesses/vulnerabilities to test

for

! Testing to assure resistance/resilience to attack

– Need a resource for what attacks to simulate for

resistance/resilience testing

© 2008 MITRE

A Resource for Creating the

Weakness/Vulnerability Testing Target List

© 2008 MITRE

Vulnerability Type Trends:

A Look at the CVE List (2001 - 2007)

© 2008 MITRE

XSS Attack Modes

! Attack modes
– Send a link that the victim clicks on

– Send an email containing script that automatically “clicks”
the link for the user

• Javascript / AJAX / Flash / etc. can be very powerful

– Convince a user to visit a web page

• Or compromise a web page yourself

! Typical consequences
– Steal cookies, e.g. those used for authentication

– Phishing - redirect user to malicious site

– Malware - exploit client-side vulnerabilities

– Modify content – fake news stories or stock prices anyone?

! While XSS is most frequent in web applications, it can
also happen to web server software (e.g. IIS, Apache),
web browsers (e.g. Internet Explorer, Firefox), and web-
friendly desktop applications (e.g. Flash, PDF)

© 2008 MITRE

XSS is possible anywhere scripting is supported

! <script …>

!

! CSS styles

! tags

! DOM-based XSS
– Client-side Javascript doesn’t handle inputs properly

! Direct insertion of javascript into code segment of web
page

! Flash, PDF, other web-friendly technologies

! Encoding

! Filter bypass

The wide variety of attacks and weaknesses is oneThe wide variety of attacks and weaknesses is one

reason why XSS is so commonreason why XSS is so common…… and why CVE and why CVE

descriptions try to list the variants unless theydescriptions try to list the variants unless they’’rere

<SCRIPT> or <<SCRIPT> or <imgimg srcsrc==javascriptjavascript> examples.> examples.

© 2008 MITRE

Javascript Splicing

! Another XSS variant, but into javascript

portion of the generated web page

– aka “Javascript injection”

! Filtering <script> etc. is not effective

– Injections follow Javascript syntax, so “()”

and “;” become relevant

! Example: CVE-2007-2581

© 2008 MITRE

Blacklists and XSS
! “I’ll just strip uses of <SCRIPT>”

– This works:

! “But I want to support IMG tags, so I’ll just strip ‘javascript’”

– This works (no lie):

! “I’ll decode everything, THEN look for ‘javascript’”

– This works (no lie): <img src="javas
 cript:alert('hi')

! “I’ll make sure that only ‘http’ is allowed”

– This works: <img src="http://www.example.com/pic.jpg"
onmouseover="alert('hi')">

! “I’ll make sure to strip out ‘onmouseover’”

– This works: <img src="http://www.example.com/pic.jpg”
onload="alert('hi')">

! “I’ll only support SRC for IMG tags”

– This works (no lie): <b onmouseover="javascript:alert('hi')">hello

! … and many, many more

Insufficient protection schemes often affect the exact sameInsufficient protection schemes often affect the exact same

vector in multiple vector in multiple CVECVE’’ss. One CVE for the original missing. One CVE for the original missing

XSS protection, another CVE for the wrong protection.XSS protection, another CVE for the wrong protection.

© 2008 MITRE

Integer Overflows

! 32bit vs. 64bit

! #2 issue for OSes

! Not just for C

! Frequently bypassed in signed

comparison

© 2008 MITRE

Buffer Overflow Variants

! Array index errors

– Attacker can control the index of an array

– Often allows writing to / reading from arbitrary

locations

– Can apply to any language that indexes arrays

• Negative arguments have special meaning in Perl

• Large indices could trigger creation of large data structure

! Closely related: user-controlled offsets

– Found in callback management routines

– Found in plugin capabilities

Removing and Preventing the Vulnerabilities
Requires More Specific Definitions…CWEs

Failure to Sanitize Directives in a Web Page (aka 'Cross-site scripting' (XSS)) (79)

• Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS) (80)

• Failure to Sanitize Directives in an Error Message Web Page (81)

• Failure to Sanitize Script in Attributes of IMG Tags in a Web Page (82)

• Failure to Sanitize Script in Attributes in a Web Page (83)

• Failure to Resolve Encoded URI Schemes in a Web Page (84)

• Doubled Character XSS Manipulations (85)

• Invalid Characters in Identifiers (86)

• Alternate XSS syntax (87)

Failure to Constrain Operations within the Bounds of an Allocated Memory Buffer (119)

• Unbounded Transfer (‘Classic Buffer Overflow’) (120)

• Write-what-where Condition (123)

• Boundary Beginning Violation (’Buffer Underwrite') (124)

• Out-of-bounds Read (125)

• Wrap-around Error (128)

• Unchecked Array Indexing (129)

• Incorrect Calculation of Buffer Size (131)

• Miscalculated Null Termination (132)

• Return of Pointer Value Outside of Expected Range (466)

Path Traversal (22)

• Relative Path Traversal (23)

• Path Traversal: '\..\filename' (29)

• Path Traversal: '\dir\..\filename' (30)

• Path Traversal: 'dir\..\filename' (31)

• Path Traversal: '...' (Triple Dot) (32)

• Path Traversal: '....' (Multiple Dot) (33)

• Path Traversal: '....//' (34)

• Path Traversal: '.../...//' (35)

• Absolute Path Traversal (36)
• Path Traversal: '/absolute/pathname/here’ (37)

• Path Traversal: '\absolute\pathname\here’ (38)
• Path Traversal: 'C:dirname’ (39)

• Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (40)

© 2008 MITRE

Goal of the Common Weakness

Enumeration Initiative

! To improve the quality of software with
respect to known security issues within
code, design, or architecture

– define a unified measurable set of these
weaknesses

– enable more effective discussion and
description of these weaknesses

– support the selection and use of
software security tools and services to
find these weaknesses

© 2008 MITRE

7 Kingdoms

CLASP

Tool A

Microsoft
PLOVER

OWASP

Protection
Analysis

RISOS

Bishop

Landwehr

Aslam

Weber

Tool B

WASC

Using A Unilateral NDA with MITRE to Bring in Info

Purpose:

! Sharing the proprietary/company confidential information contained in the
underlying Knowledge Repository of the Knowledge Owner’s Capability for the
sole purpose of establishing a public Common Weakness Enumeration (CWE)
dictionary that can be used by vendors, customers, and researchers to
describe software, design, and architecture related weaknesses that have
security ramifications.

! The individual contributions from numerous organizations, based on their
proprietary/company-confidential information, will be combined into a
consolidated collection of weakness descriptions and definitions with the
resultant collection being shared publicly.

! The consolidated collection of knowledge about weaknesses in software,
design, and architecture will make no reference to the source of the
information used to describe, define, and explain the individual weaknesses.

Coverity

© 2008 MITRE

Timeline of Items Enumerated and Defined in CWE

of “fully” Defined Items

Come to agreement on

what the different aspects

of a weakness need to be

captured in the definition

-- re-baseline “fully”

#
 o

f
it

e
m

s

time

of Identified Items

Incorporate weakness definitions from contributing
organizations

draft 4
draft 5

draft 3
Added in
CLASP,
7 Kingdoms,
Landwehr,
OWASP,
WASC, et. al.

draft 2

Started

w/PLOVER

draft 1

draft 6

draft 7

CWE material
from multiple
sources - variety
of aspects
covered with
some difference
in terminology

draft 8
draft 9

Version 1.0

© 2008 MITRE

Formalizing a Schema for Weaknesses
Identifying Information
! CWE ID
! Name

Describing Information
! Description
! Extended Description
! Alternate Terms
! Demonstrative Examples
! Observed Examples
! Context Notes
! Source Taxonomy
! References
! Whitebox Definition
! Blackbox Definition
! Formal Definition

Scoping & Delimiting Information
! Type
! Functional Area
! Likelihood of Exploit
! Common Consequences
! Enabling Factors for Exploitation
! Common Methods of Exploitation
! Applicable Platforms
! Time of Introduction

Prescribing Information
! Potential Mitigations

Enhancing Information
! Weakness Ordinality
! Causal Nature
! Affected Resource
! Related Attacks
! Detection Factors
! Node Relationships
! Research Gaps

© 2008 MITRE

CWE Content Fields Defined
http://cwe.mitre.org/documents/schema/index.html

© 2008 MITRE

2005

300 nodes

PLOVER

2006

CWE

draft 5

599 nodes

2007

CWE

draft 7

634 nodes

4/11/2008

CWE

draft 9

695 nodes

© 2008 MITRE

CWE Draft 9 (11 April 08)

© 2008 MITRE

The Classification Problem:
Same Term, Many Perspectives, Lots of Overlap

!Write of data past explicitly specified
boundaries of a buffer

!Crash, code execution, control/data flow
modification

!Failure to fully control contents of format stringsFormat string specifiers relative to the underlying
representation in use (typically C-style strings)

Format String

!Crash

!“Memory Corruption”

!Infinite loop

!Failure to anticipate or handle error conditions

!Failure to properly limit scope of an error

Provide invalid argumentDoS

!Crash

!“Memory Corruption”

!Infinite loop

Failure to sufficiently control resource consumption
relative to performance expectations for the
application and/or its environment

!Large number of events

!Send a large amount of data

!Manipulate algorithmic complexity

DoS

!Execution of script code

!Modification of format or presentation

Failure to properly filter, escape, or encode outputs
with respect to their particular role (e.g. tags or tag
arguments), in a fashion that is syntactically or
semantically valid for the representation and
encoding that are currently in use

!<SCRIPT>alert(‘hi’)</SCRIPT>

!“javascript:alert(document.cookie)”

!“java#42;script:abc” …

XSS

Access privileged functionality or data
before fully navigating all required
authentication steps

!Failure to enforce required sequence of steps

!Failure to prevent modification of assumed-
immutable data

!Secondary effect of primary issue

!Perform invalid sequence of instructions, e.g.
direct request

!Replay challenge/response

!Cookie modification

!SQL injection

Authentication Bypass

Disclosure of sensitive information relative
to an implicit or explicit policy of what
constitutes “sensitive”

!Failure to anticipate error conditions

!Failure to limit info in error messages

!Failure to zero out sensitive info

!Provide invalid argument

!Monitor behavioral or timing results

!Sniff

Information Leak

Access of file outside intended
subdirectory

Failure to properly restrict file within intended
subdirectory

“..”, “/a/b/c”, “….//”, etc.Directory Traversal

!Write of data past explicitly specified
boundaries of a buffer

!Crash, code execution, control/data flow
modification

!Failure to restrict length

!Failure to control offset

!Error in attempting to do either of these

!Long string argument

!Length field inconsistency

!Large number of events, etc.

Buffer Overflow

ConsequenceVuln/WeaknessAttackTerm

© 2008 MITRE

Draft 8 to Draft 9 Changes

© 2008 MITRE

CWE “Scrub”

© 2008 MITRE

CWE “Scrub”

© 2008 MITRE

! Assessment Vendors

! Assessment Customers

! Software Developers

! Software Customers

! Academic Researchers

! Applied Vulnerability Researchers

! Refined Vulnerability Information Providers

! Educators

! Specialized Communities:
– Web application security community (e.g. WASC, OWASP)

– NIST SAMATE

• want to understand tool capabilities

– Secure code development

– Secure coding standards

• encourages the adoption of coding practices to avoid vulnerabilities (e.g. the CERT
Secure Coding Standards project).

– Language vulnerability avoidance

• provide guidance to programmers in avoiding vulnerabilities inherent in programming
languages and guidance to language developers in improving their language standards
(e.g. ISO/IEC TR 24772 being developed by ISO/IEC JTC 1/SC 22/OWGV)

CWE Stakeholders

© 2008 MITRE

© 2008 MITRE

© 2008 MITRE

Guiding CWE’s Changes By Stakeholder Priorities

© 2008 MITRE

© 2008 MITRE

© 2008 MITRE

© 2008 MITRE

CWE-1000: Natural Hierarchy
! Pillars, Classes, Bases, Variants
! Why a hierarchy?

– Simplify CWE mapping
– Identify gaps

• Tool coverage
• General knowledge

– Education

! Challenges
– Everything’s primary and resultant
– Chains are everywhere
– Can be difficult to remove “attack” from the

“weakness”
– Terminology is vague or has multiple uses

• “Leak” has at least 2 meanings

– Many well-known issues are really consequences
of errors that aren’t so well-known

• SQL injection, buffer overflow, NULL pointer dereference

© 2008 MITRE

Node Types

weakness

class

weakness
base

weakness
base

weakness

variant

weakness

variant

Categories: arbitrary collections

Class: general weakness type

Base: weakness type

Variant: very low-level weakness type

weakness

class
weakness

class

natural

hierarchy

root

weakness
base

weakness
base

categories

• • • • • • • • • •

comprehensive

hierarchy

root

© 2008 MITRE

Node Types: Example

Issues

that

affect

files

Insufficient

Input

Validation

Path

Traversal
XSS

../ ….//

Categories: arbitrary collections

Class: general weakness type

Base: weakness type

Variant: very low-level weakness type

Path

Equivalence

Directory

Restriction

• • • • • • • • • •

Incorrect

Resource

Transfer

Between

Spheres

Pathname

Traversal

and

Equivalence

Errors

comprehensive

hierarchy

root

© 2008 MITRE

Comprehensive View

NVD C

Resource

7PK

Natural

Hierarchy

Graph
Explicit Slice

Implicit Slice

Graph

Graph

Implicit Relationship

Explicit Relationship

View
CWE

Entry

© 2008 MITRE

Problems With Categorization

! Same terminology used in multiple dimensions
– Frequent mix of attacks, threats, weaknesses/faults,

consequences
• e.g. buffer overflows, directory traversal

– Hard to classify vulnerabilities cleanly

– Complex issues don’t have simple terms

! Lack of diagnosis by researchers
– Primary vs. resultant issues

! Few disclosures offer enough details
– CWE has almost 700 entries

– Many variants of buffer overflow, XSS, directory traversal

! UI implications in data collection
– How to consistently select from 700 options?

– How to go back and re-categorize when you identify a new
type of issue?

© 2008 MITRE

Role Analysis:
Classes, Bases, Variants, and Categories

© 2008 MITRE

[cwe.mitre.org/data/definition/79.html]

CWE-79 Cross-site scripting (XSS) (Draft 6to7)

© 2008 MITRE

[cwe.mitre.org/data/definition/79.html]

CWE-79 Cross-site scripting (XSS) (Draft 7to8)

CAPEC link --->

© 2008 MITRE

CWE-79 Failure to Sanitize Directives in a Web Page
 (aka 'Cross-site scripting' (XSS)) (Draft 8to9)

[cwe.mitre.org/data/definition/79.html]

© 2008 MITRE

Public Difference Reports for

Schema Changes and…

© 2008 MITRE

Public Difference Reports

for Content Changes

© 2008 MITRE

CWE Compatibility & Effectiveness Program

15
25

cwe.mitre.org/compatible/

(launched Feb 2007)

© 2008 MITRE

! AppSIC
! Apple
! Aspect Security
! Booz Allen Hamilton Inc.
! Cenzic
! CERIAS/Purdue University
! CERT/CC
! Cigital
! Codenomicon
! Core Security
! Coverity
! DHS
! Fortify
! Gramma Tech
! IBM
! Interoperability Clearing House
! JHU/APL
! JMU
! Kestrel Technology
! KDM Analytics
! Klocwork
! McAfee
! Microsoft
! MIT Lincoln Labs
! MITRE
! North Carolina State University

! NIST
! NSA
! OMG
! Oracle
! Ounce Labs
! OSD
! OWASP
! Palamida
! Parasoft
! PolySpace Technologies
! proServices Corporation
! SANS Institute
! SecurityInnovation
! Security University
! Semantic Designs
! SofCheck
! SPI Dynamics
! SureLogic, Inc.
! Symantec
! UNISYS
! VERACODE
! Watchfire
! WASC
! Whitehat Security, Inc.

Current Community Contributing to the
Common Weakness Enumeration

To join send e-mail to cwe@mitre.org

© 2008 MITRE

© 2008 MITRE

Vulnerability Theory:

Problem Statement and Rationale
! With 600+ variants, what are the main themes?
! Why is it so hard to classify vulnerabilities cleanly?

– CWE, Pernicious Kingdoms, OWASP, others

! Same terminology used in multiple dimensions
– Frequent mix of attacks, threats, weaknesses/faults,

consequences
– E.g. buffer overflows, directory traversal

! Goal: Increase understanding of vulnerabilities
– Vocabulary for more precise discussion
– Label current inconsistencies in terminology and taxonomy
– Codify some of the researchers’ instinct

! One possible application: gap analysis, defense, and design
recommendations

– “Algorithms X and Y both assume input has property P. Attack
pattern A manipulates P to compromise X. Would A succeed
against Y?”

– “Technology Z has properties P1 and P2. What vulnerability
classes are most likely to be present?”

– “Why is XSS so obvious but so hard to eradicate?”

© 2008 MITRE

Vulnerability Theory
! A framework for systematically understanding and

discussing vulnerabilities and related concepts

! I am not going to define “vulnerability” here. You’re
welcome.

! Common Weakness Enumeration (CWE) lists almost 700
entries!

– Buffer overflow, off-by-one, XSS, format string, unprotected
communications channel, weak permissions, incorrect
blacklist, use of hard-coded crypto key, insufficient
randomness, …

– Weaknesses can lead to vulnerabilities

! Terminology is sorely lacking

With so many issues, we cannot reasonably expectWith so many issues, we cannot reasonably expect

developers (or tools) to anticipate every problem indevelopers (or tools) to anticipate every problem in

every line of written code.every line of written code.

© 2008 MITRE

What’s it Good For?

! Education
– Make the expert’s knowledge more accessible to

others

– See issues in a new light

– Institutional memory, please!

! Increase our own understanding of
vulnerabilities
– Conduct more systematic gap analysis

– Researchers can identify new opportunities

– Richer vocabulary for more precise discussion

– Guidance for vulnerability classification

– Relate issues that seem different on the surface

© 2008 MITRE

© 2008 MITRE

Artifact Labels and Protection

Mechanisms

InteractionInteraction

CrossoverCrossover

TriggerTrigger

ActivationActivation

Canary-Based Overflow Protection

RBAC / Behavioral Profiling /

External Policy Enforcement

Custom Input Validation

Application Firewalls

No wonder itNo wonder it’’ss

getting more difficultgetting more difficult

to determineto determine

““exploitabilityexploitability””

© 2008 MITRE

© 2008 MITRE

Many Vulnerabilities are Multi-Factor

IntegerInteger

OverflowOverflow

IncorrectIncorrect

RangeRange

CheckCheck

HeapHeap

OverflowOverflow

InsufficientInsufficient

MemoryMemory

AllocationAllocation

CodeCode

ExecutionExecution

““MemoryMemory

CorruptionCorruption””

CrashCrash

ResultantResultant

BehaviorBehavior

PrimaryPrimary

WeaknessWeakness

(Root(Root

Cause)Cause)

ConsequenceConsequence
ResultantResultant

WeaknessWeakness

ResultantResultant

WeaknessWeakness

One of the main problems with classification andOne of the main problems with classification and

terminology is that ANY behavior in the chainterminology is that ANY behavior in the chain

could be regarded as the vulnerability.could be regarded as the vulnerability.

© 2008 MITRE

Chain Example:

Integer Overflow to Heap Overflow

IntegerInteger

OverflowOverflow
HeapHeap

OverflowOverflow

A B

size = height * width;
buf = malloc(size);
memmove(buf, InputBuf, SZ);

A

B

height = 65534; width = 65534
Assumption:

height and

width are

reasonable

sizes.

The buffer overflow occurs because the newly

created buffer is smaller than expected, because

the integer overflow causes the ‘size’ variable to

be smaller than expected.

CWE-190: Integer

Overflow

CWE-122: Heap-based

Buffer Overflow

© 2008 MITRE

Protection Schemes
! Definition: a behavior that is intended to protect the product

against one or more attacks

! Note: protection schemes (e.g. input validation) are not the
same as security features (e.g. encryption, authentication)

! Explicit
– “Validate/sanitize input”

• This is the vaguest, most-abused phrase today!

– “Filter bad characters”

– “Check input file type”

– “Verify number within range”

– “Apply regular expression”

– “Convert to correct data type”

! Implicit
– Data execution prevention, sandboxing, address reordering,

taint checking, …

! Implicit at one level is explicit at another
– htmlentities() in PHP is implicit at the application level, explicit

within the interpreter itself

© 2008 MITRE

Chain Example: Failed Protection

Mechanism with Resultant Issues

IntegerInteger

OverflowOverflow

IncorrectIncorrect

RangeRange

CheckCheck

HeapHeap

OverflowOverflow

InsufficientInsufficient

MemoryMemory

AllocationAllocation

A
B C

D

if (height > 64000 ||
 width > 64000) {
 error("too big!");
}
size = height * width;
buf = malloc(size);
memmove(buf, InputBuf, SZ);

A

B

C

D

height = -65534; width = -65534

Assumption: the

range check will

prevent an

overflow from

occurring.

Use of SignedUse of Signed

Integers forIntegers for

Always-Always-

PositivePositive

OperationsOperations

X

© 2008 MITRE

Failed Protection Mechanism with

Resultant Issues (XSS)

IncompleteIncomplete

BlacklistBlacklist

Print databasePrint database

contents withoutcontents without

encodingencoding

Insertion ofInsertion of

invalid data intoinvalid data into

databasedatabase

HTMLHTML

InjectionInjection

(XSS)(XSS)

A
B C D

if ($input =~ /<script>/) {
 die("Bad!"); }
AddCommentToDatabase($user, $input);

A

B

C

D, X

input =

Design mixes control and data in same streamDesign mixes control and data in same stream

while (ReadDb(\$user, \$comment) {
 print "$user:‘$comment’
"); }

Process 1

Process 2

Process 3

(browser)

X

Doing A correctly, implementing encoding in C,

or changing X would eliminate this issue.

© 2008 MITRE

Chain: Path Traversal with

Protection Mechanism Failure

$home = "/home/www/l18n/";
$input = WebParam(‘lang’);
if ($input =~ /\.\./) {
 die("Bad!"); }
$input = URLdecode($input);
$fname = $home + "$input" + ".txt";
ReadFileAndDumpToUser($fname);

A

B

C

lang = %2e./%2e./%2e/etc/passwd%00

Check forCheck for

““....””

PathPath

TraversalTraversal

A
B

C

DecodeDecode

Null byte

allows access

of files not

ending in .txt

CWE-180: Validate-

Before-Canonicalize

CWE-23: Relative

Path Traversal

CWE-180

isn’t a chain.

Neither

behavior is

an inherent

weakness;

the only

problem is

the ordering.

© 2008 MITRE

Composite: Path Traversal

CWE-23: Relative PathCWE-23: Relative Path

TraversalTraversal

•Application can potentially access anywhere user ‘nobody’ can

•No real built-in OS permissions for ‘cannot navigate above this directory’

•Null bytes widen the scope – ‘cut off’ .txt extension

• Influence of pathname is typically a design-level decision, and can be

done safely with proper pathname generation

Lack ofLack of

““containercontainer””

enforcement forenforcement for

file accessesfile accesses

CWE-216

(partial)

‘‘LooseLoose’’

DirectoryDirectory

PermissionsPermissions

CWE-275

OutsiderOutsider

influence ofinfluence of

pathnamepathname

N/A

(design-level)

InteractionInteraction

ErrorError

(null byte)(null byte)

CWE-626

© 2008 MITRE

Symbolic Link Following

Insecure directoryInsecure directory

permissionspermissions

CWE-275

Race ConditionRace Condition

CWE-362 PredictabilityPredictability

CWE-340

Path EquivalencePath Equivalence

CWE-41

SymlinkSymlink Following Following
CWE-41

(composition)

© 2008 MITRE

Composite: Symbolic Link Following

CWE-61: SymlinkCWE-61: Symlink

FollowingFollowing

‘‘LooseLoose’’

DirectoryDirectory

PermissionsPermissions

CWE-275

RaceRace

ConditionCondition

CWE-362

PredictabilityPredictability

CWE-340

PathPath

EquivalenceEquivalence

CWE-41

•Filename can be predicted

•File can be created by other party before it is opened for writing

•File created in a shared directory with writable permissions

•Equivalence: a symlink can act an alternate name for a critical file

© 2008 MITRE

Integer Overflow Discussion

! Any number of failed protection mechanisms can allow
integer overflows

! A canonical integer overflow involves no protection
mechanism at all

! Any number of correct protection mechanisms can
prevent integer overflows from occurring at all

! Integer overflows can occur, as long as they’re checked
for (a different type of protection mechanism than the
ones that prevent overflows from occurring)

! Integer overflows are expected, valid behavior in some
algorithms

! Integer overflows can be relevant in non-memory
situations, e.g. loop control

© 2008 MITRE

Incorrect Ordering with Resultant

Issues

CorrectCorrect

check for check for ““....””
DecodeDecode

PathPath

TraversalTraversal

A B
C

D

$home = "/home/www/l18n/";
$input = urldecode(WebParam(‘lang’));
if (($input =~ /^\//) ||
 ($input =~ /\.\./) {
 die("Bad!"); }
$input = urldecode($input);
$fname = $home + "$input" + ".txt";
DumpFileOutput($fname);

A

B

C

D, E

lang = %2e./%2e./%2e/logs/apache/weblog%00Lack ofLack of

““containercontainer””

enforcement forenforcement for

file accessesfile accesses

InteractionInteraction

Error (nullError (null

byte)byte)

X

DecodeDecode

Y

Null byte

allows access

of files

beyond .txt

XSSXSS

E

© 2008 MITRE

Chains, Composites, and Code Scanning

! Comparisons between code scanning capabilities
can yield significantly different results

! Very little overlap between tools
– … but are they reporting different links in a chain?

SymlinkSymlink

FollowingFollowing

CWE-61

SmallSmall

Space ofSpace of

RandomRandom

ValuesValues

CWE-344

A

Use ofUse of

SharedShared

DirectoryDirectory

N/A

B

File OpenFile Open

withoutwithout

Requiring itRequiring it

CanCan’’t Existt Exist

AlreadyAlready

N/A

C

Human AnalystHuman AnalystTool 1Tool 1 Tool 2Tool 2 Tool 3Tool 3

© 2008 MITRE

Takeaways from Chains and Composites

! Almost anything can be primary

! Almost anything can be resultant

! Chains are still relatively unexplored

! Resolving a single weakness can break

the chain, or reduce the scope

! Behaviors are infinite

© 2008 MITRE

© 2008 MITRE

© 2008 MITRE

© 2008 MITRE

Some High-Level CWEs Are Now
Part of the NVD CVE Information

NVD XML feeds

also include CWE

© 2008 MITRE

© 2008 MITRE

© 2008 MITRE

OWASP Top Ten 2007

Building A
Common
Enumeration

DHS’s SwA
CBK & Acq Guide

ISO/IEC JTC
1/SC 22's OWGV
- Other Working
Group on
Vulnerabilities

SANS National
Secure
Programming
Skills Assessment

SEI CERT

Secure Coding
Standards Effort

OWASP
&

WASC

DHS/NIST

SAMATE

Tool

Assessment Reference

Dataset

Center for
Assured SW

Reference

Dataset

SwA SIG

Previously Published

Vulnerability Taxonomy
Work

Secure
Software’s

John
Viega’s

CLASP and
Taxonomy

Cigital’s
Gary

McGraw’s
Work and
Taxonomy

Microsoft’s
Mike

Howard’s
Work and
Taxonomy

OWASP’s
Checklist

and
Taxonomy

CVE-based

PLOVER Work

Fortify’s
Brian

Chess’s
Work and
Taxonomy

CWE

Compatibility

CWEs

that a

Tool finds

Dictionary

Common Weakness

Enumeration (CWE)

call & count the same
 ! enable metrics &
 measurement

Klocwork’s
Checklist

and
Taxonomy

Ounce
Lab’s

Taxonomy

Gramma
Tech’s

Checklist
and

Taxonomy

DHS’s BSI
Web site

Kestrel Technology

NSA/CTC

Watchfire

Stanford

MIT LL

SEI

Purdue

GMU

IBM

Oracle

JMU

UC Berkeley

KDM Analytics

Unisys

UMD
NCSU

Core Security
Coverity

Cenzic

SPI Dynamics

Parasoft

VERACODE

Security Institute

CVE and NVD

using CWEs

© 2008 MITRE

A Resource for Creating the Attack

Resistance/Resilience Testing Target List

© 2008 MITRE

Attack Patterns Overview

! Represent common approaches to attack

! Abstracted from actual exploits and attacks

! Gives you an attacker’s perspective you may not have
on your own

! Excellent resource for many key activities
– Abuse Case development

– Architecture attack resistance analysis

– Risk-based security testing

– Red team penetration testing

! Resources
– Attack Patterns article series on Build Security In website

(buildsecurityin.us-cert.gov)

– Common Attack Pattern Enumeration and Classification (CAPEC)

– Exploiting Software [Hoglund & McGraw 04]

! Primarily attack-centric testing methods

© 2008 MITRE

What is CAPEC?

! Community effort targeted at:

– Standardizing the capture and description of attack patterns

– Collecting known attack patterns into an integrated
enumeration that can be consistently and effectively
leveraged by the community

– Classifying attack patterns such that users can easily identify
the subset of the entire enumeration that is appropriate for
their context

! Where is CAPEC today?
– http://capec.mitre.org

– Currently 101 patterns

– Future plans

• New patterns

• Align patterns with other resources

• Formalize patterns to finer granularity to support test case
generation and bridging with the malware and incident response
communities

© 2008 MITRE

What do Attack Patterns Look Like?

! Primary Schema Elements
– Identifying Information

• Attack Pattern ID

• Attack Pattern Name

– Describing Information
• Description

• Related Weaknesses

• Related Vulnerabilities

• Method of Attack

• Examples-Instances

• References

– Prescribing Information
• Solutions and Mitigations

– Scoping and Delimiting Information
• Typical Severity

• Typical Likelihood of Exploit

• Attack Prerequisites

• Attacker Skill or Knowledge Required

• Resources Required

• Attack Motivation-Consequences

• Context Description

! Supporting Schema Elements
– Describing Information

• Injection Vector

• Payload

• Activation Zone

• Payload Activation Impact

– Diagnosing Information

• Probing Techniques

• Indicators-Warnings of Attack

• Obfuscation Techniques

– Enhancing Information

• Related Attack Patterns

• Relevant Security Requirements

• Relevant Design Patterns

• Relevant Security Patterns

© 2008 MITRE

Common Attack Pattern Enumeration and
Classification (CAPEC)

© 2008 MITRE

How do you identify relevant attack

patterns?

! Abuse cases from requirements

! Threat modeling as part of architectural

risk analysis

! Contextual mapping

© 2008 MITRE

Leveraging attack patterns as
test case templates

! Attack patterns contain information that can significantly
assist in defining contexts, preconditions, test data,
action steps, postconditions and variation axes for
security test cases

– Context: Context Description, Examples-Instances, Related
Weaknesses, Related Vulnerabilities, Relevant Security
Requirements, Relevant Design Patterns, Relevant Security
Patterns

– Preconditions: Attack Prerequisites, Attacker Skill or Knowledge
Required, Resources Required

– Test data: Description

– Action steps: Description, Method of Attack, Injection Vector,
Payload, Activation Zone

– Postconditions: Description, Attack Motivation-Consequences,
Payload Activation Impact

– Variation axes: Description, Solutions and Mitigations, Probing
Techniques, Obfuscation Techniques

© 2008 MITRE

Very simplistic test case example
Test Case 1: Single quote SQL injection of registration page web form fields

Test Case Goal: Ensure SQL syntax single quote character entered in registration page web form fields
does not cause abnormal SQL behavior

Context:
•This test case is part of a broader SQL injection syntax exploration suite of tests to probe various
potential injection points for susceptibility to SQL injection. If this test case fails, it should be followed-up
with test cases from the SQL injection experimentation test suite.

Preconditions:
•Access to system registration page exists
•Registration page web form field content are used by system in SQL queries of the system database
upon page submission
•User has the ability to enter free-form text into registration page web form fields

Test Data:
•ASCII single quote character

Action Steps:
•Enter single quote character into each web form field on the registration page
•Submit the contents of the registration page

Postconditions:
•Test case fails if SQL error is thrown
•Test case passes if page submission succeeds without any SQL errors

© 2008 MITRE

Attack Pattern Schema Formalization:
Improving the value for test case generation

! Current effort underway to provide a more formalized

schema for the attack pattern Description element to

better support test case definition and eventually

automated generation

! First step of this formalization design has been

completed and 25 of the 101 CAPEC attack patterns

have been updated to be compliant

! Future work will involve updating the rest of the CAPEC

attack patterns and diving into even deeper levels of

formalization targeted at supporting automation

© 2008 MITRE

Attack Pattern Description
Schema Formalization

Description

! Summary

! Attack_Execution_Flow
– Attack_Phase1..3 (Name(Explore, Experiment, Exploit))

• Attack_Step1..*

– Attack_Step_Title

– Attack_Step_Description

– Attack_Step_Technique 0..*

» Attack_Step_Technique_Description

» Environments

– Indicator0..* (ID, Type(Positive, Failure, Inconclusive))

» Indicator_Description

» Environments

– Outcome0..* (ID, Type(Success, Failure, Inconclusive))

– Security Control0..* (ID, Type(Detective, Corrective, Preventative))

© 2008 MITRE

Leveraging the formalized schema

! Modular test cases should be defined for each Attack_Phase

! Attack_Step enumeration forms the foundation for test case action

steps

! Equivalence classes should be defined around each variation axes

including Attack_Step, Attack_Technique & Security Control

! Indicators and Outcomes should be used for defining test case

postconditions

! Environments should be used for defining test case contexts and

preconditions

© 2008 MITRE

Software Assurance Programs and
Activities Landscape

85

S-CAP FDCC

CCE/

OVAL/

CRF/

XCCDF/

CPE

CVE/CWE/

CVSS/CRF/

CCE/

OVAL/

XCCDF/

CPE

CVE/CWE/

CVSS/CRF/

CCE/OVAL/

XCCDF/CPE/

CME/CAPEC/

MAEC

CVE/CWE/

CVSS/CRF/

CCE/OVAL/

XCCDF/CPE/

CME/CAPEC/

MAEC/CEE

CPE/

OVAL/

CRF

Asset

Inventory

Configuration

Guidance
Analysis

Vulnerability

Analysis

Threat

Analysis
Intrusion
Detection

Vulnerability
Alert

Configuration
Guidance

Asset
Definition

Knowledge Repositories

Threat
Alert

Incident
Report

Incident
Management

Operational Enterprise Networks

Centralized Reporting
Enterprise IT

Change Management

Development &
Sustainment
Security
Management
Processes

Assessment

of System
Development,

Integration, &

Sustainment

Activities

and
Certification &

Accreditation

System &

Software

Assurance

Guidance/
Requirements

Operations Security Management Processes

CPE/OVAL XCCDF/OVAL/

CCE

CVE/CWE/CVSS/

CME/CAPEC/MAEC

CWE/CAPEC/

SBVR/MAEC

OVAL/XCCDF/

CCE/CPE/CRF

CVE/CWE/

OVAL/CVSS

Enterprise IT Asset Management

Mitigating Risk Exposures Responding to Security Threats

CAIF/IDMEF/IODEF/CVE/CWE/

OVAL/CPE/CME/MAEC/CEE/CRF

CVE/CWE/CVSS/CCE/OVAL/XCCDF/

CPE/CME/CAPEC/MAEC/CEE/CRF

CVE/CWE/CVSS/CCE/OVAL/XCCDF/

CPE/CME/CAPEC/MAEC/CEE/CRF

© 2008 MITRE

[makingsecuritymeasurable.mitre.org]

© 2008 MITRE

To subscribe, see:

http://cwe.mitre.org/community/registration.html

or just send an email to listserv@lists.mitre.org with the command:

subscribe CWE-RESEARCH-LIST

© 2008 MITRE

To subscribe, see:

http://capec.mitre.org/community/registration.html

or just send an email to listserv@lists.mitre.org with the command:

subscribe CAPEC-RESEARCH-LIST

Acronyms
BSI Build Security In

BUF Buffer Errors

CAIF Common Announcement Interchange Format

CAPEC Common Attack Pattern Enumeration and

Characterization

CBK Common Body of Knowledge

CCE Common Control Enumeration

CEE Common Event Expression

CIS Center for Internet Security

CLASP Comprehensive Lightweight Application Security

Process

CME Common Malware Enumeration

CPE Common Package Enumeration

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DHS Department of Homeland Security

DIACAP Department of Defense Information Assurance

Certification and Accreditation Process

DoD Department of Defense

DOT Relative Path Traversal Errors

DISA Defense Information Systems Agency

eMASS Enterprise Mission Assurance Support System

FDCC Federal Desktop Core Configuration

FIDEF Forensic Investigation Description and Exchange

Formats

FISMA Federal Information

IA Information Assurance

IAVA Information Assurance Vulnerability Assessment

IODEF Incident Object Description and Exchange Formats

IT Information Technology

MAEC Malware Attribute Enumeration and Characterization

NIST National Institute of Science and Technology

NSA National Security Agency

NVD National Vulnerability Database

OMB Office of Management and Budget

OMG Object Management Group

OSD Office of the Secretary of Defense

OVAL Open Vulnerability and Assessment Language

OWASP Open Web Application Security Program

PLOVER Preliminary List Of Vulnerability Examples for

Researchers

SAMATE Software Assurance Metrics

SBVR Semantic Business Vocabulary and Rules

SCAP Security Content Automation Protocols

SIM Security Information Manager

STIGs Security Technical Implementation Guides

SwA Software Assurance

US-CERT United States Computer Emergency Response

Team

VEDEF Vulnerability & Exploit Description and Exchange

Formats

WASC Web Application Security Consortium

XCCDF eXtensible Configuration Checklist Document

Format

XSS Cross-Site Scripting

XML eXtensible Markup Language

