
Testing the Untestable- 1©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

TestingTesting

the the UntestableUntestable

GO PRO MANAGEMENT, INC.
SYSTEM ACQUISITION & DEVELOPMENT

QUALITY/TESTING
PRODUCTIVITY

22 CYNTHIA ROAD

NEEDHAM, MA 02494-1412
INFO@GOPROMANAGEMENT.COM
WWW.GOPROMANAGEMENT.COM

(781) 444-5753 VOICE/FAX

BUSINESS ENGINEERING

TRAIN
ING

Robin F. Goldsmith, JD

Testing the Untestable- 2©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

ObjectivesObjectives

� Describe common familiar and not-so-familiar

characteristics of requirements and designs

which are considered “untestable”

� Suggest seldom-recognized reasons why

others often resist testers’ concerns about (lack

of) testability

� Describe ways to create test cases for

seemingly untestable requirements and designs

Testing the Untestable- 3©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Inadequate Requirements Inadequate Requirements

Frustrate Developers TooFrustrate Developers Too

� But they don’t seem to dwell on it or let it stop

them from coding

� They make assumptions and technology- and

design-based decisions, often without being

aware they are doing it

� They also may create code based on informal
sources of requirements information

Such code often differs from what testers have reason to expect

Testing the Untestable- 4©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Testers Need to Know What the Testers Need to Know What the

Requirements Are to Confirm that Requirements Are to Confirm that

Systems Meet the RequirementsSystems Meet the Requirements

Too often testers receive requirements which
are too late and inadequate

Getting timely, testable requirements
increasingly is becoming testers' major concern

How can/should testers contribute effectively to getting
the clear and accurate requirements they need?

Testing the Untestable- 5©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Conventional Answer:Conventional Answer:
Testers Should Review RequirementsTesters Should Review Requirements

� Other folks, such as managers,

users, analysts, and sometimes

developers are involved defining

requirements up-front

� When testers impose themselves on
the requirements process:

– “Testability” can seem trivial

– Involvement can backfire if they are not

prepared to contribute meaningfully—

requires business domain subject area

knowledge that testers may not have

– They’ll prove it was right to exclude them

Testing Gurus: Testers, go

back and make “them” let you

participate in reviews to make

sure requirements are testable.

Conference
-Attendee's
Paradox

Pitfall

Testing the Untestable- 6©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Keys to Effective TestingKeys to Effective Testing

Test Input Actual Results Expected Results

Cust. #123 John P. Jones

New Cust’s Redisplays screen

name,address with fields cleared

10 Widgets $14.99

Jones, John P.

“Added”

$14.99

$.75 tax

� Define correctness independently of actual results

� You must know what the “right answer” is
� Follow independent guidelines to be more thorough

� Systematically compare actual to expected results

Testing the Untestable- 7©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Testability Issues Usually Refer to Testability Issues Usually Refer to

Difficulty Identifying Expected ResultsDifficulty Identifying Expected Results

� Inability to do so usually means requirements/

design are not sufficiently clear

– Developers are likely to get it wrong too

– Regardless, without a reliable test, there’s no way to

tell whether it’s been implemented correctly

� It usually is more possible than presumed to

define expected results

Tests often represent the clearest (perhaps only)

statement of requirements/design

Testing the Untestable- 8©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

IEEE Std 830IEEE Std 830--1998 1998

4.3 Characteristics of a good SRS4.3 Characteristics of a good SRS

a) Correct

b) Unambiguous

c) Complete

d) Consistent

e) Ranked for importance
and/or stability

f) Verifiable

g) Modifiable

h) Traceable

Content

Content

Format

Format

Format

Testability Is a Format Issue

Won’t reveal wrong requirements

Testability is irrelevant for

overlooked requirements

Mgmt

Mgmt

Mgmt

Testing the Untestable- 9©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

IEEE Std 830IEEE Std 830--19981998

b) b) UnambiguousUnambiguous
“An SRS is unambiguous if, and only if, every requirement

stated therein has only one interpretation. As a minimum, this
requires that each characteristic of the final product be

described using a single unique term.

In cases where a term used in a particular context could have

multiple meanings, the term should be included in a glossary

where its meaning is made more specific….
Representations that improve the requirements specification

for the developer may be counterproductive in that they

diminish understanding to the user and vice versa….

Natural language is inherently ambiguous.”

1. Inherently ambiguous terms 2. Logical ambiguity

Testing the Untestable- 10©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Warning: Warning:

Total Elimination of Ambiguity Is Total Elimination of Ambiguity Is

Probably Not Possible and Probably Not Possible and

Certainly May Not Be Practical orCertainly May Not Be Practical or

NecessaryNecessary

Is it reasonable to expect presumably intelligent

people to be able to read and make reasonable

interpretations?

Note: The Internal Revenue Code has gone to great lengths to

eliminate ambiguities, thereby making it virtually unintelligible

Testing the Untestable- 11©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Options Give the Options Give the Weak Phrases Can Have Weak Phrases Can Have

Developer LatitudeDeveloper Latitude Multiple InterpretationsMultiple Interpretations

� Can

� May

� Optionally

William M. Wilson “Writing Effective Requirements Specifications”

http://satc.gsfc.nasa.gov/support/STC_APR97/write/writert.html

� adequate

� as a minimum

� as applicable

� easy

� as appropriate

� be able to

� be capable

� but not limited to

� capability of

� capability to

� effective

� if practical

� normal

� provide for

� timely

� tbd

Watch for th
ese

Seemingly easy to catch

Testing the Untestable- 12©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. Minimize the number of errors when adding a customer.

But, you can create test cases without yammering about “testability.”
Input = 10 new customers not already in the customer database

Expected Results = No more than 1 of the 10 database entries contains

different data from that which was supposed to be entered for primary

customer fields: name, street address, city, state, and zip code

2. Provide sufficient customer identification information to determine
adequately whether the customer is in the search list of customer names.

Input = First and last name and birth date (month, day, and year)

Expected Results = Uniquely distinguishes among individuals with identical

first, middle, and last names at both same and different addresses, but with

each having a unique birth date [database must include instances of each]

The typical testability approach is to request that the requirement be

reworded so it can be interpreted in only one way.

Inherent Ambiguity, Multiple Possible InterpretationsInherent Ambiguity, Multiple Possible Interpretations

Testing the Untestable- 13©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. If the customer has a credit card,

enter the credit card number when adding the customer.
Add: Input Credit Card#, Name Expected Results in Database Name, Credit Card#

3456789012345678 Smith, John J. Smith, John J. 3456789012345678

Omitted Smith, Mary B Smith, Mary B. blank

321098765432109 Smith, Jim X. Error, “Invalid credit card number”, not added

2. If the customer’s credit card number has been entered,

the customer’s record can be accessed by credit card number.
Inquiry: Input Credit Card# Expected Results Displayed

3456789012345678 Smith, John J. 3456789012345678

Blank Error, “Customer not found”

321098765432109 Error, “Customer not found”

3210987654321098 [not on D/B] Error, “Customer not found”

Exercise: Logical Ambiguity, Alternative ConsequencesExercise: Logical Ambiguity, Alternative Consequences

Testing the Untestable- 14©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. If the customer has the same name as another customer,

add them to the customer database.

Add: Input Name, Address, Birth Date Expected Result, Address

Smith, John 123 Main St 1980-01-02 Added 123 Main St

Smith, John J 123 Main St 1980-01-02 Error, “Already on file”

Smith, John J Jr 123 Main St 2002-01-02 Added 123 Main St

Smith, Mary B 123 Main St 1982-03-04 Added 123 Main St

Smith, John J 524 Main St 1980-01-02 Added 524 Main St

2. If a customer has both a street number and a PO Box,

use it for the address.

Smith, Jim X 727 Main St Box 10 1966-12-15 Added Box 10 727 Main St

Smith, Jim Y Box 10 1941-08-09 Added Box 10

Logical Ambiguity, Unclear ReferenceLogical Ambiguity, Unclear Reference

Testing the Untestable- 15©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. If the customer has a credit card,

verify the check digit equals a modulus 10 and

confirm the expiration date has not yet passed;

however, if it is MasterCard or Visa, enter the security code.
.

Add: Input Card#, Expiration MM-YYYY, Security Code Expected Result

545678901234567 12-2012 321 Error, “Card no. too short”

5456789012345678 12-2012 321 Error, “Check Digit Wrong”

5456789012345670 12-2012 Error, “No Security Code”

5456789012345670 12-2006 321 Error, “Expired”

5456789012345670 12-2012 321 Added

5456789012345670 12-2011 321 Error, “Already on file”

3456789012345678 12-2012 Error, “Card no. too long”

345678901234567 12-2012 Error, “Check digit wrong”

345678901234564 12-2012 Added

Logical Ambiguity, Implied ActionsLogical Ambiguity, Implied Actions

Testing the Untestable- 16©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

LuhnLuhn algorithmalgorithm or or LuhnLuhn formulaformula, also known , also known

as the "as the "modulusmodulus 10" or "mod 10" 10" or "mod 10" algorithmalgorithm

� The formula verifies a number against its included check digit, which is
usually appended to a partial account number to generate the full account
number. This account number must pass the following test:

� Starting with the rightmost digit (which is the check digit) and moving left,
double the value of every second digit. For any digits that thus become 10
or more, add their digits together as if casting out nines. For example, 1111
becomes 2121, while 8763 becomes 7733 (from 2×6=12 → 1+2=3 and
2×8=16 → 1+6=7).

� Add all these digits together. For example, if 1111 becomes 2121, then
2+1+2+1 is 6; and 8763 becomes 7733, so 7+7+3+3 is 20.

� If the total ends in 0 (put another way, if the total modulus 10 is congruent
to 0), then the number is valid according to the Luhn formula; else it is not
valid. So, 1111 is not valid (as shown above, it comes out to 6), while 8763
is valid (as shown above, it comes out to 20).

http://en.wikipedia.org/wiki/Luhn_algorithm

Testing the Untestable- 17©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. If the customer’s credit card is expired or not MasterCard and

the address is only a PO Box,

don’t add the customer to the customer database.

If (the customer’s credit card is expired or not MasterCard) and the address is only a PO Box,

don’t add the customer to the customer database.

If the customer’s credit card is expired or (not MasterCard and the address is only a PO Box),

don’t add the customer to the customer database.

Add: Input Card#, Expiration MM-YYYY, Address Expected Result

5456789012345670 12-2006 123 Main St Added MC [first]

5456789012345670 12-2006 123 Main St Error, “Expired MC” [second]

5456789012345670 12-2012 Box 10 Added MC

345678901234564 12-2006 123 Main St Error, “Expired Amex”

345678901234564 12-2012 Box 34 Error, “Not MC, Only PO Box”

345678901234564 12-2012 Box 34 542 Main St Added Amex

Exercise: Or and Exercise: Or and AndAnd

Testing the Untestable- 18©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. Add a customer only if the credit card expiration date is

between 08/2007 and 12/2012

Add: Input Card#, Expiration MM-YYYY Expected Result

5456789012345670 07-2007 Error, “Invalid Expiration Date”

5456789012345670 01-2013 Error, “Invalid Expiration Date”

5456789012345670 08-2007 Error, “Invalid Expiration Date”

5456789012345670 12-2012 Error, “Invalid Expiration Date”

5456789012345670 09-2007 Added

5456789012345670 11-2012 Added

5456789012345670 10-2007 Error, “Already on file”

Logical Ambiguity, Unclear BoundariesLogical Ambiguity, Unclear Boundaries

Testing the Untestable- 19©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

IEEE Std 830IEEE Std 830--19981998

d) d) ConsistentConsistent
“An SRS is internally consistent if, and only if, no subset of individual requirements

described in it conflict. The three types of likely conflicts in an SRS are as follows:

a) The specified characteristics of real-world objects may conflict. For example,

1) The format of an output report may be described in one requirement as tabular but in

another as textual.

2) One requirement may state that all lights shall be green while another may state that

all lights shall be blue.

b) There may be logical or temporal conflict between two specified actions. For example,

1) One requirement may specify that the program will add two inputs and another may

specify that the program will multiply them.

2) One requirement may state that ‘A’ must always follow ‘B,’ while another may require

that ‘A’ and ‘B’ occur simultaneously.

c) Two or more requirements may describe the same real-world object but use different

terms for that object. For example, a program’s request for a user input may be called a

‘prompt’ in one requirement and a ‘cue’ in another. The use of standard terminology

and definitions promotes consistency.”

Testing the Untestable- 20©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. Expiration date MM-YY

2. Expiration date MM-YYYY

3. Expiration date month and year

Add Input Expiration Date Expected Result

0907 Added 2007-09

09/07 Added 2007-09

09-07 Added 2007-09

09-2007 Added 2007-09

907 Error, “Invalid Date”

InconsistencyInconsistency

Testing the Untestable- 21©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

IEEE Std 830IEEE Std 830--19981998

f) f) Verifiable (Testable)Verifiable (Testable)
“A requirement is verifiable if, and only if, there exists some finite cost-

effective process with which a person or machine can check that the

software product meets the requirement. In general any ambiguous

requirement is not verifiable.
Nonverifiable requirements include statements such as ‘works well,’

‘good human interface,’ and ‘shall usually happen.’ These requirements

cannot be verified because it is impossible to define the terms ‘good,’

‘well,’ or ‘usually.’ The statement that ‘the program shall never enter an

infinite loop’ is nonverifiable because the testing of this quality is
theoretically impossible.”

Verification could be by examination or analysis, which is different from

Testable—shown by writing a test case to demonstrate requirement is met.

Testing the Untestable- 22©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

1. The credit card add function works well with a good human

interface and usually can be completed within 20 seconds.

Two approaches:

1. Define “well,” “good,” and “usually” in objective operational terms. For example, “well”

and “good” could mean that the add function can be performed in no more than 30

seconds with no more than one error which is caught and corrected during the add.

“Usually” could mean that at least half of all adds are completed in 20 seconds.

2. Survey users to get their judgments.

3. Same as 2 but with specification of the qualitative characteristics constituting “well,”

“good,” and “usually.”

Similarly, while “never” indeed is not testable, for one cannot be sure that a problem

which has not occurred so far won’t occur in the future, one could declare failure to

occur in a specified number of instances and conditions gives sufficient confidence it

won’t occur in the future.

VerifiabilityVerifiability

Testing the Untestable- 23©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Where It’s Impractical or Inappropriate to Where It’s Impractical or Inappropriate to

Create Actual Results, e.g.,Create Actual Results, e.g.,

� A drug dosage or injury that will kill you

� Predicting future events, such as the economy or

weather

� Performance tests involving huge volumes

Simulations, sampling, modeling, extrapolation from similar
situations, and expert opinion reviews may suffice—look for

reasonableness of results

Testing the Untestable- 24©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

�� Addressing Quality FactorsAddressing Quality Factors

Application Features
Usability

Reliability

Correctness

Durability

Appearance

Availability

Usefulness

Operability

Performance

Supportability

Cost-Effectiveness

Adaptability

Efficiency Style

Reusability Structure

Portability Flexibility

Traceability Testability

Maintainability

Manageability

Manufacturability

Understandability

Documentation

Interoperability

Safety

Security

Scalability

Stability

Integrity

Testing the Untestable- 25©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Quality Factors, with Terms Such as Quality Factors, with Terms Such as

“Easy,” Can Be Defined Objectively, e.g., “Easy,” Can Be Defined Objectively, e.g.,
1. Intuitively.

a) Understandable readily-observable instructions.

b) Self-explanatory without extra training.

c) Guided and prompted.

1) Logical sequence of a small set of simple steps.

2) Identify full set of choices when decisions are needed.

2. Validate data at time of entry.

a) Immediately retrieve and reveal related data.

b) Confirm context and business rules compliance.

c) Provide clear explanations of errors.

3. Enable straightforward corrections and exit.

4. Any time of day from any place using devices including

a) Computer

b) Portable digital assistant

c) Telephone

Testing the Untestable- 26©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Tests of Terms Such as “Easy” Raise Tests of Terms Such as “Easy” Raise

Issues of Creating Inputs/ConditionsIssues of Creating Inputs/Conditions

� Test cases don’t demonstrate “easy” directly

� Rather, the test cases must create conditions

which would provoke errors if the function is not

“easy,” for example:

– Rapid entry of large numbers of complex inputs

– Use in dim light

– Repeated entry and modification

Testing the Untestable- 27©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

An Often Overlooked Testability Issue: An Often Overlooked Testability Issue:

Inadequate Information to Test FullyInadequate Information to Test Fully

� Inadequacy of information often is not apparent

on its face, so it’s missed in reviews

� Spotted during rigorous, disciplined testing—

which frankly isn’t as common as presumed

� Especially likely with use cases and user stories

which are seldom examined critically

Testing the Untestable- 28©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Use Cases, Usually Are Defined as Use Cases, Usually Are Defined as

Requirements, also Are Test CasesRequirements, also Are Test Cases
Defined as “How an actor interacts with the system.”

The actor is usually the user, and the system is what the

developers expect to be programmed. Therefore, use cases

really are white box/design rather than black box/business

requirements. Flowgraph this Use Case. Path=Test Case
U1. Enter customer number R1.1. Customer is found (U4)

R1.2 Customer is not found (U2)

U2. Enter customer name R2.1 Select customer from list (U4)

R2.2 Customer is not in list (U3)

U3. Add customer R3 Customer is added
U4. Enter order R4 Order is entered (Exit)

Testing the Untestable- 29©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

FlowgraphFlowgraph of Use Caseof Use Case

U1

R2.2

Exit

U3

R3

R1.2R1.1

U4

R2.1

U2

R4

• U1-R1.1-U4-R4-Exit

• U1-R1.2-U2-R2.1-U4-R4-Exit
• U1-R1.2-U2-R2.2-U3-R3-U4-

R4-Exit

• U1-R1.2-U3-R3-U4-R4-Exit

• U1-R1.2-Exit

• U1-R1.2-U2-R2.2-Exit
• U1-R1.2-U2-R2.2-U3-Exit

• U3-R3.1-Exit

• U4-R4.1-Exit
R3.1

R4.1 How many different

inputs cause each path

be executed?

Testing the Untestable- 30©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

SummarySummary

� Ambiguous, inconsistent, and difficult-to-verify
requirements and designs are most commonly
what is considered “untestable”

� Testers’ concerns about (lack of) testability are
often resisted as trivial nitpicking

� Test cases often can be created for seemingly
untestable requirements/designs, may in fact
serve as more useful definitions, and illustrate
testability concerns in a manner more likely to
be appreciated

Testing the Untestable- 31©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Systems QA Software Quality Effectiveness Maturity Model

Software, Test Process Measurement & Improvement ROI

Feasibility

Analysis
Systems

Analysis
System

Design
Develop-

ment Implement-

ation Operations

Maintenance

Proactive Testing:

Risk-Based Test Planning,

Design, and Management
Testing Early in the Life Cycle
Re-Engineering: Opportunities for IS

Defining and Managing

User Requirements

Credibly Managing Projects and Processes with Metrics

21 Ways to Test Requirements

Making You a Leader

Managing Software Acquisition and Outsourcing:

> Purchasing Software and Services
> Controlling an Existing Vendor’s Performance

Proactive User Acceptance Testing
Reusable Test Designs

Test Estimation
Risk

Analysis

Writing Testable SW Requirements

GGGGOOOO PPPPRORORORO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, IIIINC.NC.NC.NC.

Seminars and Consulting--Relation to Life Cycle

Testing the Untestable- 32©2009 ©2009 ©2009 ©2009 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Robin F. Goldsmith, JDRobin F. Goldsmith, JD
robin@gopromanagement.comrobin@gopromanagement.com (781) 444(781) 444--57535753

www.gopromanagement.comwww.gopromanagement.com
• President of Go Pro Management, Inc. consultancy since 1982, working directly with and training professionals in

business engineering, requirements analysis, software acquisition, project management, quality and testing.
• Partner with ProveIT.net in REAL ROI™ and ROI Value Modeling™.
• Previously a developer, systems programmer/DBA/QA, and project leader with the City of Cleveland, leading

financial institutions, and a “Big 4” consulting firm.
• Degrees: Kenyon College, A.B.; Pennsylvania State University, M.S. in Psychology; Suffolk University, J.D.;

Boston University, LL.M. in Tax Law.
• Published author and frequent speaker at leading professional conferences.
• Formerly International Vice President of the Association for Systems Management and Executive Editor of the

Journal of Systems Management.
• Founding Chairman of the New England Center for Organizational Effectiveness.

• Member of the Boston SPIN and SEPG’95 Planning and Program Committees.
• Chair of BOSCON 2000 and 2001, ASQ Boston Section‘s Annual Quality Conferences.
• Member ASQ Software Division Methods Committee.
• Member IEEE Std. 829 for Software Test Documentation Standard Revision Committee
• International Institute of Business Analysis (IIBA) Business Analysis Body of Knowledge (BABOK) subject expert.

• Admitted to the Massachusetts Bar and licensed to practice law in Massachusetts.
• Author of book: Discovering REAL Business Requirements for Software Project Success

1

Mar 2009 Slide 1

Software Quality Group of New England

SQGNE is made possible by the support of our sponsors:

Mar 2009 Slide 2SQGNE

Welcome to SQGNE’s 15th season!

An all-volunteer group with no membership dues!

Supported entirely by our sponsors…

Over 700+ members

Monthly meetings - Sept to July on 2nd Wed of month

E-mail list - contact John Pustaver pustaver@ieee.org

SQGNE Web site: www.swqual.com/sqgne/main.html

Mar 2009 Slide 3SQGNE

SQGNE Volunteers / Mission

John Pustaver - Founder and Director

Steve Rakitin – Programs and web site

Gene Freyberger – Annual Survey

Our gracious Hosts:

Paul Ratty (Sun) - room, copies, cookies

Tom Arakel (Sun) - room, copies, cookies

Jack Guilderson (Sun) – A/V equipment

SQGNE Mission
To promote use of engineering and management techniques that lead to
delivery of high quality software

To disseminate concepts and techniques related to software quality engineering
and software engineering process

To provide a forum for discussion of concepts and techniques related to
software quality engineering and the software engineering process

To provide networking opportunities for software quality professionals

Mar 2009 Slide 4SQGNE

ASQ Software Division

Software Quality Live - for ASQ SW Div members…

Software Quality Professional Journal www.asq.org/pub/sqp/

CSQE Certification info at www.asq.org/software/getcertified

SW Div info at www.asq.org/software

Mar 2009 Slide 5SQGNE

SQGNE 2008-09 Schedule

Annual Hot Topics Night…7/9/0911. Everyone

Test Tool - Make or Buy?6/10/09CSC10. Stan Wrobel

Automated Functional Test Design5/13/09None9. Derek Kozikowski

Automating security testing of web apps using cURL
and Perl

4/8/09Cigital Networks8. Scott Matusmoto
or Paco Hope

Testing the Untestable3/11/09GoPro Management7. Robin Goldsmith

The Nitty Gritty of QA Project Management2/11/09None6. Carol Perletz

Schedule Games1/14/09Rothman & Assoc.5. Johanna Rothman

Integrating Agile into the Development Process12/10/08Tizor Systems4. Russ Ohanian

Estimating using Wideband Delphi Method - An
interactive exercise

11/12/08None3. Howie Dow and
Steve Rakitin

A Survey of Test Automation Projects10/8/08Star Quality2. Brian LeSuer

Introduction to using Quality Function Deployment
on Software Projects

9/10/08None1. Lou Cohen

TopicDateAffiliationSpeaker

Mar 2009 Slide 6SQGNE

Tonight’s Speaker…
Testing the Untestable

Robin Goldsmith

Testability of requirements and design is a major concern for testers. When something is not testable, it's
usually because it's not clear, which increases chances of development errors; and regardless, one cannot
reliably do the job of testing whether implementation is correct. Defining testable Quality Factors (often
called "nonfunctional requirements") is especially challenging. In this eye-opening interactive
presentation, Robin Goldsmith shows how tests indeed can be created for seemingly untestable
requirements/designs, with the side benefit of helping correct likely problem sources without engendering
so much of the resistance testers typically tend to encounter.

* Common characteristics of untestable requirements and designs.
* Why others often resist testers' concerns about testability.
* Creating test cases for seemingly untestable requirements/designs.

Robin F. Goldsmith, JD has been President of Go Pro Management, Inc. consultancy since 1982. He works directly with and trains business and
systems professionals in requirements analysis, quality and testing, software acquisition, project management and leadership, metrics, and process
improvement. He partners with ProveIT.net in providing ROI Value Modeling™ tools, training, and advisory services.

Previously he was a developer, systems programmer/DBA/QA, and project leader with the City of Cleveland, leading financial institutions, and a "Big
4" consulting firm.

Author of the Proactive Testing™ methodology, numerous articles, and the recent Artech House book Discovering REAL Business Requirements for
Software Project Success, and a frequent featured speaker at leading professional conferences, he was formerly International Vice President of the
Association for Systems Management and Executive Editor of the Journal of Systems Management. He was Founding Chairman of the New England
Center for Organizational Effectiveness. He belongs to the Boston SPIN and served on the SEPG'95 Planning and Program Committees.

Mr. Goldsmith held virtually all ASQ Boston Section leadership positions, and Chaired record attendance BOSCON 2000 and 2001 Annual Quality
Conferences. He was a member of the ASQ Software Division Methods Committee and the IEEE Software Test Documentation Std. 829-2008
revision Committee. He is a member of the International Institute of Software Testing and International Institute (IIST) for Software Process (IISP)
Body of Knowledge Advisory Boards. He is a subject expert on requirements and testing for TechTarget and a subject expert and reviewer for the
International Institute of Business Analysis (IIBA) Business Analysis Body of Knowledge (BABOK).

He holds the following degrees: Kenyon College, A.B. with Honors in Psychology; Pennsylvania State University, M.S. in Psychology; Suffolk
University, J.D.; Boston University, LL.M. in Tax Law. Mr. Goldsmith is a member of the Massachusetts Bar and licensed to practice law in MA.

