Nitty Gritty of QA Project Management

11-Feb-09 Carol Perletz

Agenda

- 1. Introduction
- 2. Definitions
- 3. Software Development Life Cycle Processes
- 4. The SQA Role
- 5. SQA Project Management
- 6. My Case Studies
- 7. Your QA Project Management Challenges
- 8. References

Introduction

Introduction

My background

- 1984 hired as a part time tester
- 1987 became a "QA Engineer"
- 1992 attended the IBM Quality College; began evangelizing SQA
- 1993 spearheaded the development of the company's 1st SDLC
- 2000 corporate quality core team member
- 1989 2009
 - Managed test teams
 - Developed/modified SDLC processes
 - Established metrics programs, reviews, audits, quality plans, quality reports
- My experience
 - Companies expect QA engineers to cover testing
 - QA often does not perform quality assurance activities
 - People who call themselves quality professionals may not have the skills or background to perform quality functions
 - QA Engineer is equal to test engineer in the U.S.
 - QA Engineers are not generally found outside the U.S.

Definitions

Definitions

- Quality doing the right thing in the right way (Dave Miller)
- Software quality software that has a low level of defects when deployed, is reliable, satisfies the majority of users, and is maintainable (Steve Rakitin)
- Software quality assurance assuring that software meets the 4 criteria above (my definition)
- IEEE 6.10.12-1990 defined QA as assuring that software conforms to its technical requirements
- Testing the execution of software to find its faults (Watts Humphrey)
- Project management achieving the needed software quality level while simultaneously respecting the project lead-time and cost constraints (Bharath Srinivasan and Devi Sujathaa)

How do these definitions fit in with today's software projects?

- QA is recent terminology and is used more often when referring to shrink-wrapped or pure software products in the U.S.
- Testing and test engineering became an independent discipline in companies producing operating systems in the 1960s and 1970s
- Companies headquartered in Europe and many companies in the U.S. who produce low level software and hardware have System Test groups, not QA groups
- Companies who hire QA Engineers in the U.S. most often want skilled test engineers
- Most companies I have interviewed with, or been employed in, do not understand ASQ quality engineering

Software Development Life Cycle Processes

Software Development Life Cycle Processes

- Waterfall a cascade of phases, each dependent upon the completion of the previous phase
 - Requirements analysis
 - Requirements definition
 - Design
 - Implementation
 - Testing
 - Release/maintenance/support
- Modified waterfall
 - Feedback loop back from implementation to design
 - Feedback loop back from testing to design/implementation
- Concurrent development/test
 - Requirements definition
 - Design of code and tests
 - As portions of code are completed, they are tested
 - Formal regression/validation testing of the entire product
 - Release/maintenance/support

Software Development Life Cycle Processes (con't)

Rapid prototyping

- Requirements definition
- Rapid design
- Prototype building cycles
- Customer evaluation of prototypes in each cycle
- Implementation
- Testing
- Release/maintenance/support
- Spiral
 - Requirements definition
 - Initial prototype
 - Planning
 - Risk analysis
 - Additional prototype cycles
 - Implementation
 - Testing
 - Release/maintenance/support

Software Development Life Cycle Processes (con't)

The Unified Process

- Use case driven use cases drive the requirements, design, implementation, and test
- Architecture-centric starting with the platform and then incorporating the use cases
- Incremental a staging and scheduling strategy in which parts of the system/product are developed and integrated as they are completed
- Iterative mini projects, repeating analysis, design, code & test

Agile methodology

- Requirements derived with the customer
- Incremental development and delivery of working software every 2-3 weeks
- Solid engineering practices and infrastructure
- Extreme programming
- Embraces change

Software Development Life Cycle Processes (con't)

- Scrum
 - Vision/planning ROI goals, releases, milestones
 - Customer commits to one Sprint at a time; defining business value
 - Product backlog is a prioritized list of requirements
 - Sprint development based on a Sprint Backlog of explicit tasks
 - Sprints last for 30 days after which a product increment must be delivered
 - Daily Scrum meetings to remove obstacles to progress
 - Sprint Review meeting where functionality is demonstrated
 - Product Owner decides after which increment the functionality is released

Software Development Processes

- CMMI the Capability Maturity Model with guidelines for improving the software process
 - Level 1 initial
 - Level 2 repeatable
 - Requirements management
 - Project planning
 - Project tracking and oversight
 - Subcontract management
 - Quality assurance
 - Configuration management
 - Level 3 defined
 - Organization is process focused
 - Organizational process definition
 - Training program
 - Integrated software management
 - Product engineering
 - Intergroup coordination
 - Peer review
 - System testing

Software Development Processes (con't)

- Level 4 managed
 - Quantitative process management
 - Software quality management
- Level 5 optimizing
 - Defect prevention
 - Technology change management
 - Process change management
- The Team Software Process (TSP) a process framework for building and guiding engineering teams that develop software
 - Cornerstone early defect removal
 - Based on the practices in the CMM
 - An instance of a Level 5 CMM process for a team
 - A prerequisite for each team member is the Personal Software Process (PSP)

Software Development Processes (con't)

- Project launch
 - Team building
 - Requirements
 - Detailed plans
 - Quality plan
- Requirements
- High level design
- Implementation
- Integration and system test
- Extreme programming -12 practices
 - Unit tests are written prior to the functional coding
 - Pair programming
 - Refactoring continuously to simplify the design
 - Implement functionality only when you need it
 - Produce functionality tests to ensure that requirements and performance goals are being met

Software Development Processes (con't)

- On-site customer resolves ambiguities, sets priorities, and helps with user testing
- Continuous integration and testing
- Continuous planning prioritizing and addressing user stories
- Overall architecture is defined to drive the small iterations and owned by the entire team
- Coding standards are adopted across the team
- Code is completed
- Test-driven Development
 - Automated tests are written that describe a capability
 - A minimal API is created so that the tests compile (they fail)
 - The API and underlying logic are implemented so tests pass
 - Refactor the code so that it is clean and as simple as possible
 - When all parts are integrated, follow the traditional system testing phase

The SQA Role

SQA In SDLC Processes

- Waterfall & Modified Waterfall (V or X test model)
 - 1. Review requirements for testability
 - 2. Review functional and design specs for completeness and testability
 - 3. Write and have reviewed test plans and test cases
 - 4. Perform all testing, bug reporting, metric collection when implementation is complete
 - 5. In a modified waterfall model:
 - 1. Write new tests if there is a redesign feedback loop or new functionality added
 - 2. Run new tests if a redesign feedback loop or new functionality added
 - 6. Release

- Concurrent Development/test
 - 1. Steps 1 & 2 as in the waterfall model
 - 2. Iterations of builds passed from Development to QA
 - Test organization writes test plans, test cases for functionality in a build
 - Test organization receives incremental builds/drops
 - Test organization tests the functionality in each build
 - 3. Development produces an integrated build containing all functionality
 - 4. Formal testing
 - Rerun all previously run tests
 - Performance testing
 - System testing
 - 5. Release

Rapid Prototyping

- Same steps as waterfall or modified waterfall process
- Or, same steps as the concurrent development/test process
- Spiral combines rapid prototyping and waterfall methodologies, adding the risk analysis component
 - First circle planning, risk analysis, prototype, customer evaluates prototype
 - 2. Second circle more refined prototype, requirements documented and validated, customer assesses new prototype, risk analysis
 - Third circle further prototyping, design, integration and testing, risk analysis
 - 4. Step 4 of the waterfall model
 - 5. Release

• The Unified Process

- Inception phase establish business case through use case diagrams, define success critera, risk assessment, resource estimates, and a project plan
- 2. Elaboration phase
 - Analyze domain, establish architecture, eliminate highest risks, enhance project plan
 - Mitigate risks find ways of handling technical issues and business concerns with the prototypes
- Construction develop the rest of the components, integrate, thoroughly test
- 4. Transition beta testing, release the product to the customers

- Agile plan only what you need, doc what you need, test what you need
 - 1. Product planning provide general targets for the project; basic requirements and basic project plan
 - 2. Increment planning (for each increment of 2 3 weeks)
 - Test planning only for the increment
 - Tight communication between testers and developers
 - Expect significant changes regularly (customer works directly with the team)
 - 3. Increment development
 - Developers responsible for testing functionality (unit tests)
 - Customers responsible for usability testing
 - Test engineers become expert consultants helping developers with functional test strategy and customers with acceptance test strategy
 - Test engineers plan for system testing including: security, safety, performance, reliability, installability, and maintainability
 - 4. Increment is delivered to the customer as working software
 - 5. Final increment delivery is the full product release (integration is as you go)

SCRUM

- The process is an Agile process
- Increments are called Sprints and are 30 days long
- Daily SCRUMs are for communicating problems and getting team members unstuck
- Co-located team members manage a backlog
- Programmers and testers are brought together to share development

SQA in Development Processes

CMMI

- Level 2 repeatable: Quality Assurance Group plans and implements the project's QA activities to ensure the software process steps and standards are followed
 - 1. SQA Plan is written
 - 2. Review the development plan, standards and procedures
 - 3. Review software engineering activities for compliance
 - 4. Audit software for compliance
 - 5. Report results of activities
 - 6. Document and handle deviations in software activities and products

Level 3 – defined: Software Testing Group performs formal testing

- 1. Testing criteria developed
- 2. Effective methods are chosen to test the software
- 3. Test readiness criteria established
- 4. Regression testing
- 5. Test plans, test procedures, & test cases undergo peer review
- 6. Test plans, test procedures, & test cases managed and controlled
- 7. Integration testing
- 8. System and acceptance testing

SQA in Development Processes (con't)

• TSP

- 1. Team sets quality goals and standards
- 2. Personal design and code reviews
- 3. Team inspects all work products
- 4. Weekly tracking of quality indicators
- 5. Team identifies and resolves quality problems
- 6. Cycle and phase postmortems
- 7. Team sends the product to the System Test group
- Extreme Programming
 - 1. Customer chooses the most valuable story (highest priority)
 - 2. Programmers break the story into smaller tasks
 - 3. Programmer pairs turn each task into a set of unit test cases
 - Programmer pairs code to make the test cases run, evolving the system design to be as simple as possible
 - 5. All test code and story code is integrated into the the full system
 - 6. Customer functional tests are integrated as they are supplied
 - 7. At the end of each iteration, the customer's functional tests are run along with all unit tests

SQA in Development Processes (con't)

- Test-driven Development: define the system's parts that must be present to test the high risk components
 - 1. Write a master test plan that identifies and prioritizes the project level risks
 - 2. Define the pieces of the system that need to be tested earlier
 - Developers build the high risk pieces first and they are then tested
 - 4. Units and modules are tested immediately after they are integrated
 - 5. Full system testing

SQA Project Management

SQA Project Management

• What's your sphere of quality assurance?

 Sphere 1: the quality of the software development process

- Sphere 2: the quality of the software
- Sphere 3: the quality of both the development process and the software

Sphere 1: The Process

- Your role
 - Determine whether the product development process has been followed
 - Report your results to senior management
- Assumptions
 - You are independent from the teams developing and testing the software
 - The product development process has been documented and teams are trained
 - You have the authority from senior management to do your job

Sphere 1: The Process (con't)

- Your activities
 - Write a quality plan containing:
 - Objectives
 - Resource requirements
 - Schedule of activities
 - Standards being used
 - Evaluations to be performed
 - Audits and reviews to be performed
 - Procedures for documenting and tracking non-compliance
 - Documentation that will be produced
 - Method and frequency of reporting
 - Perform your tasks
 - Report your results

Sphere 2: The Software

• Your role

- Propose and get agreement on the definition of software quality
- Plan and execute the activities needed to assure the software meets the quality definition
- Report your conclusions
- Assumptions
 - You are a member of the program/project leadership team
 - Product requirements are documented
 - Functional specifications are documented
 - There is a change management process for dealing with new, modified, and removed requirements
 - There is a defect tracking system in use

Sphere 2: The Software (con't)

- Your activities
 - Write a master project test plan containing:
 - Overview with the purpose of the product release, audience addressed by the plan, scope of the plan, references
 - Test strategy
 - Development phase entrance & exit criteria
 - Test infrastructure
 - Test environments
 - Resources
 - Automation
 - Test methodology
 - Requirements traceability
 - Types of testing
 - Schedule (who is doing what, when, % effort)
 - Metrics program including release criteria
 - Limitations and risks
 - Deliverables

Sphere 2: The Software (con't)

- Perform tasks
- Produce deliverables
- Participate in program/project meetings, assisting with decisions & providing data
- Participate in bug triage meetings
- Participate in phase exit reviews
- Participate in the go/no go decision for release

Sphere 3: Process and Software

• Your role

- Determine whether the product development process has been followed
- Report to program/project manager your results
- Propose and get an agreement from the project/program team on the definition of the product quality
- Plan and execute the defined tasks
- Report conclusions
- Assumptions
 - Product development process is documented
 - You have buy-in from program/project team and senior management for your quality role
 - Product requirements are documented
 - Functional specifications are documented

Sphere 3: Process and Software (con't)

- A change management process is in place
- A defect tracking system is in use
- Your activities
 - Write a quality plan including the scope of activities to be performed for assurance
 - Write a master test plan describing the testing and release criteria
 - Perform tasks
 - Produce deliverables
 - Participate in program/project and bug triage meetings
 - Participate in phase exit reviews
 - Participate in the go/no go decision for the release
 - Report process assurance results

Case Studies

Case Studies

- 1992 EASEL Corporation went from CMM Level 1 to Level 2 (repeatable)
 - A painful software product release was 3 months late
 - As QA Manager, I spearheaded the development and approval of a SDLC process (waterfall model)
- 1994 EASEL Corporation ran the first SCRUM Agile project
 - Acquired the San Diego company who developed Smalltalk
 - Jeff Sutherland, "a father of SCRUM" was brought in as VP of Engineering and led us in the first SCRUM project, a Smalltalk release
- 1998 Lernout & Hauspie Speech Products (L & H) hired a VP of Quality
 - VP worked to improve IT, business operations, and customer support processes
 - I was tasked with improving the software quality
 - A team at corporate headquarters in Belgium wrote a SDLC (modified waterfall model)

Case Studies (con't)

- 2002 Nokia's multimedia messaging group created test processes and templates to be used across development teams in 3 sites
- 2003 I worked with a process engineer in our division at Nokia and with a program manager in Helsinki to develop a solution SDLC process
 - Three products were integrated into the solution
 - 2 products used a concurrent development/test model and the 3rd used an iterative development model
- 2006 former Funk Software group acquired by Juniper Networks went from CMM Level 1 to Level 2, repeatable
 - There were no processes, no test plans, no written test cases, no standards for requirements documents or functional specifications
 - In January 2006, a new Juniper SDLC process was rolled out
 - A project team consisting of teams in CA, MA, and India successfully released a large integration project using this SDLC with a modified waterfall model

Case Studies (con't)

- 2007 our Juniper division added processes and templates to the corporate SDLC
 - A division-wide team was established to better fit the corporate SDLC to software products
 - A modified waterfall model was used
- 2008 Juniper created a new business unit to produce a product which was an integration of a software product in Cambridge with a software product in Canada to be delivered on the same hardware platform
 - The MA project team regularly used a concurrent development/test model
 - The Canadian team regularly used a strict waterfall model
 - I worked with the Canadian SQA Manager to develop some processes, templates, checklists, and role definitions to be shared
 - The Engineering Manager was located in Canada and owned all of the Development and SQA resources on the project
 - All project members were required to use a strict waterfall model

What are Your QA Project Management Challenges?

References

References

Watts S. Humphrey. <u>Managing the Software Process</u>. 1989. Addison-Wesley. Reading, MA

Steven R. Rakitin. <u>Software Verification and Validation for Practitioners and</u> <u>Managers, Second Edition</u>. 2001. ARTECH HOUSE, INC. Norwood, MA

Ivar Jacobson, Grady Booch, and James Rumbaugh. "The Unified Process", IEEE Software. May/June 1999

Jennitta Andrea. "Piecing Together the Truth About TDD", Better Software. January/February, 2008

Alan S. Koch. "The Role of Testers in the Agile Methods", Software Quality Progress. VOL. 7, NO. 3/2005, ASQ

Ken Schwaber. "Scrum: It Depends on Common Sense", Cutter Consortium. 2004

References (con't)

Kent Beck. "Embracing Change with Extreme Programming", Computer. IEEE October 1999

Robin Goldsmith and Dorothy Graham. "Test-Driven Development", Software Development. October 2002

Gertrud Bjornvig, James O. Coplien, and Neil Harrison. "A Story About User Stories and Test-Driven Development", Better Software. December 2007

Carnegie Mellon University Software Engineering Institute. <u>The Capability</u> <u>Maturity Model: Guidelines for Improving the Software Process</u>, 2000. Addison-Wesley. Reading, MA

James W. Over. "Quality Management in the Team Software Process (TSP)", Software Engineering Institute. 2001. Carnegie Mellon University