
6:0 © 2005-2018 hello2morrow !1

Revealing Invisible Technical and Architectural Debt
Quality Attributes 

Alexander v. Zitzewitz
a.zitzewitz@hello2morrow.com

blog.hello2morrow.com

Invisible Quality Attributes

The structure of your software, aka Architecture
Software Metrics

They influence many things:

How easy/difficult is it to comprehend your software
Maintainability
Testability
Vulnerability through cyber threats

4/12/18 © 2005-2018, hello2morrow !2

Understanding Technical Debt as a Metaphor

Ward Cunningham first defined the term in 1992:

“Shipping first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite… The
danger occurs when the debt is not repaid. Every minute spent on
not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation, object-oriented or
otherwise.”

4/12/18 © 2005-2018, hello2morrow !3

How to track technical debt

Define rules that minimize the creation of “not quite right code”
Architecture rules and models
Metric based rules (thresholds)
Programming rules
Testing rules

Count rule violations to measure your debt (automation needed)
But how to weigh the rules?
How to make sure that you’re not wasting time with irrelevant
rules?

4/12/18 © 2005-2018, hello2morrow !4

Categories of Technical Debt

Category Repair Cost Visible Impact Maintainability
Impact

Programming Low Medium Mostly low
Testing Potentially High High Medium
Local/Global Metrics Low / High Low Low / High
Architecture Very High Low Very High

4/12/18 © 2005-2018, hello2morrow !5

Architectural Debt…

Is just a very toxic form of technical debt

Therefore avoiding it becomes crucial to keep software in good
shape.

4/12/18 © 2005-2018, hello2morrow !6

The single best thing you can do for the long term health,
quality and maintainability of a non-trivial software

system is to carefully manage and control the
dependencies between its different elements and

components by defining and enforcing an architectural
blueprint over its lifetime.

4/12/18 © 2005-2018, hello2morrow !7

 
Software Architecture equals Dependency Management 

Because, if you don’t…

4/12/18 © 2005-2018, hello2morrow !8

Another example for Architecture derailed…

4/12/18 © 2005-2018, hello2morrow !9

Architecture of Apache-Cassandra (or what is left of it)

Reminds me of…

4/12/18 © 2005-2018, hello2morrow !10

Why architectures tend to erode…

Very hard to see from the perspective of the developer
Software-Architects rarely use tools to visualize and manage
dependencies
If they even describe architecture, it is often informal (PowerPoint, Wiki
etc.)
That means it is hard to check conformity of code to architectural rules
Rules that are not enforced will be broken
Often there are no clearly defined quality and architecture standards that
must be met for a software to be considered “done”.
Agile projects consider architecture as a side effect of a user story
Who has time for this??

4/12/18 © 2005-2018, hello2morrow !11

Now add Micro-Services to this mix

Splitting a messy monolith into Micro-Services will move the mess
to the network layer
Dependency management between services becomes even more
important
Avoid service loops – no cyclic dependencies between services
We will need a way to visualize and restrict dependencies
between services
Static analysis can be useful here
Micro-Services increases complexity significantly (e.g. possible
points of failure, network problems etc.)

4/12/18 © 2005-2018, hello2morrow !12

Agile Development and Architecture

The agile approach does not automatically create maintainable
and well architected systems. Often the opposite is true.
Ongoing management of Technical Debt is considered to be a
critical success factor for high quality and maintainable
software systems even by promoters of the agile approach
Architectural debt is a very toxic form of technical debt
That challenges the idea that software development should
almost exclusively be driven by business value
Project size has obviously an important influence

4/12/18 © 2005-2018, hello2morrow !13

Early Warning Metrics for Architectural Erosion

Structural Debt Index
Can be computed for packages/namespaces or components (source files)
Number measures number of changes necessary to disentangle cyclic
dependency groups
Cyclic dependencies are a good indicator for structural erosion

ACD (Average Component Dependency, John Lakos)
Measures overall coupling
Value usually grows with system size
NCCD is a normalized version of this metric

Those metrics can be computed by our free tool Sonargraph-
Explorer

Can be integrated with SonarQube/Jenkins

4/12/18 © 2005-2018, hello2morrow !14

Do you manage Technical/Architectural Debt?

Do you have binding rules for code quality?
Do you measure quality rule violations on a daily base?
Is your architecture defined in a formal way?
Do you measure architecture violations on a daily base?
Does quality management happen at the end of development?
Does your current QM lead to sustainable results?
Are there incentives for writing great code?

4/12/18 © 2005-2018, hello2morrow !15

How to enforce an Architectural Model

You need a formal machine readable version of your architectural
model
This allows a tool based approach where the tool can warn
developers in their IDE or break the build when architecture
violations are introduced

4/12/18 © 2005-2018, hello2morrow !16

Example: Order System

4/12/18 © 2005-2018, hello2morrow !17

First step: think about package naming

Use functionality as top-level discriminator

com.hello2morrow.ordermanagement.order
com.hello2morrow.ordermanagement.customer
com.hello2morrow.ordermanagement.product

4/12/18 © 2005-2018, hello2morrow !18

Step 2: High level architecture (in DSL)

4/12/18 © 2005-2018, hello2morrow !19

Advantages of a DSL

Easy to read and understand
Works well with version control systems and can be diffed
Can be changed without access to a tool
More powerful than just drawing boxes
Different aspects can be described in independent files
Architecture diagrams can be generated
Architecture files can be generated from diagrams

4/12/18 © 2005-2018, hello2morrow !20

Components

A component is the atomic element of architecture
Usually a single source file, in C/C++ a combination of header
and source files
Is addressed via the relevant parts of its physical location

4/12/18 © 2005-2018, hello2morrow !21

• Patterns address groups of components

Artifacts

Artifacts can contain components or other artifacts
Artifacts have interfaces and connectors
An interface is an incoming port granting access to a subset of
components in artifact
A connector is an outgoing port that can be connected to an
interface of another artifacts
Connections are only possible between connectors and interfaces
Each artifact has a default connector and a default interface, both
containing all components in the artifacts
User can restrict the default connector and the default interface

4/12/18 © 2005-2018, hello2morrow !22

Step 3: Layering of major elements

4/12/18 © 2005-2018, hello2morrow !23

Formal description of Layering:

4/12/18 © 2005-2018, hello2morrow !24

Step 4: Putting everything together

4/12/18 © 2005-2018, hello2morrow !25

Final details

4/12/18 © 2005-2018, hello2morrow !26

Where do modules fit?

4/12/18 © 2005-2018, hello2morrow !27

Modules and Architecture

Modules structure should reflect the topmost level of your
architecture
Limit number of modules to dozen’s at the most
100’s of modules always create new problems
Modules are very limited when it comes to enforce architectural
restrictions – no nesting
Maven is not a module system and is not able to enforce
architectural descriptions

4/12/18 © 2005-2018, hello2morrow !28

Architecture Pattern: Smart Monolith

4/12/18 © 2005-2018, hello2morrow !29

Same Thing as Micro-Services

4/12/18 © 2005-2018, hello2morrow !30

DSL Implements UML Component Diagrams

4/12/18 © 2005-2018, hello2morrow !31

Another bigger example live

4/12/18 © 2005-2018, hello2morrow !32

Q & A  
 

a.zitzewitz@hello2morrow.com 
blog.hello2morrow.com 

@AZ_hello2morrow 

