. HELLOMORROW

Revealing Invisible Technical and Architectural Debt
Quality Attributes

Alexander v. Zitzewitz
a.zitzewitz@helloZ2morrow.com
blog.hello2Zmorrow.com

6:0 © 2005-2018 hello2morrow 1

. HELLOZMORROW g
¥ 0

Invisible Quality Attributes

© The structure of your software, aka Architecture
© Software Metrics

They influence many things:
© How easy/difficult is it to comprehend your software
© Maintainability

© Testability
© Vulnerability through cyber threats

4/12/18 © 2005-2018, hello2morrow 2

. HELLOZMORROW

Understanding Technical Debt as a Metaphor

Ward Cunningham first defined the term in 1992:

“Shipping first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite... The
danger occurs when the debt is not repaid. Every minute spent on
not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a stand-still under the
debt load of an unconsolidated implementation, object-oriented or
otherwise.”

4/12/18 © 2005-2018, hello2Zmorrow 3

. HELLOZMORROW

How to track technical debt

@ Define rules that minimize the creation of “not quite right code”
© Architecture rules and models
@ Metric based rules (thresholds)
@ Programming rules
Q@ Testing rules

© Count rule violations to measure your debt (automation needed)
© But how to weigh the rules?

© How to make sure that you’re not wasting time with irrelevant
rules?

4/12/18 © 2005-2018, hello2Zmorrow 4

. HELLOZMORROW

Categories of Technical Debt

Category Repair Cost Visible Impact | Maintainability
Impact

Programming

Testing
Local/Global Metrics
Architecture

4/12/18 © 2005-2018, hello2Zmorrow 5

. HELLOMORROW g
. 4

Architectural Debt...

Is just a very toxic form of technical debt

Therefore avoiding it becomes crucial to keep software in good
shape.

4/12/18 © 2005-2018, hello2morrow 6

. HELLOZMORROW

Software Architecture equals Dependency Management

The single best thing you can do for the long term health,
quality and maintainability of a non-trivial software
system is to carefully manage and control the
dependencies between its different elements and
components by defining and enforcing an architectural
blueprint over its lifetime.

4/12/18 © 2005-2018, hello2morrow 7

HELLOMORROW

Because, if you don't...

CHANCES ARE YOUR CODE ORGANIZED CODE LOOKS

LOOKS LIKE THIS: MORE LIKE THIS:

-

UKU*UKU
2-0-9-B
/

* Much reduced team velocity * Much lower cost of change

* Frequent regression bugs + Easier to maintain, test and understand
+ Hard to maintain, test and understand * Improved developer productivity

» Modularization is impossible * Lower risk

ToavIvuuiIdi icauvi 1o IIIIPUOOIUIG LA A B B AL Y

4/12/18 © 2005-2018, hello2morrow

g 7
£ ﬁt

2 O

. HELLOMORROW

Another example for Architecture derailed...

34 Metrics |1ééWon(s... |a%’0 Works... | ' Issue... | [Resol... |§ Duplic... |i‘$ Cycle ... Hi

Focus: @ None W [Transitively v/ Only Visiole @ Onlyinternal 3+ 3 = 6% &y O O ¥

Architecture of Apache-Cassandra (or what is left of it)

4/12/18 © 2005-2018, hello2morrow 9

. HELLOMORROW

Reminds me of...

4/12/18 © 2005-2018, hello2morrow 10

. HELLOZMORROW

Why architectures tend to erode...

© Very hard to see from the perspective of the developer

© Software-Architects rarely use tools to visualize and manage
dependencies

© If they even describe architecture, it is often informal (PowerPoint, Wiki
etc.)

@ That means it is hard to check conformity of code to architectural rules
© Rules that are not enforced will be broken

@ Often there are no clearly defined quality and architecture standards that
must be met for a software to be considered “done”.

@ Agile projects consider architecture as a side effect of a user story
© Who has time for this??

4/12/18 © 2005-2018, hello2Zmorrow 11

. HELLOZMORROW

Now add Micro-Services to this mix

© Splitting a messy monolith into Micro-Services will move the mess
to the network layer

@ Dependency management between services becomes even more
important

© Avoid service loops — no cyclic dependencies between services

© We will need a way to visualize and restrict dependencies
between services

@ Static analysis can be useful here

© Micro-Services increases complexity significantly (e.g. possible
points of failure, network problems etc.)

4/12/18 © 2005-2018, hello2Zmorrow 12

. HELLOZMORROW

Agile Development and Architecture

© The agile approach does not automatically create maintainable
and well architected systems. Often the opposite is true.

© Ongoing management of Technical Debt is considered to be a
critical success factor for high quality and maintainable
software systems even by promoters of the agile approach

© Architectural debt is a very toxic form of technical debt

@ That challenges the idea that software development should
almost exclusively be driven by business value

© Project size has obviously an important influence

4/12/18 © 2005-2018, hello2Zmorrow 13

. HELLOZMORROW

Early Warning Metrics for Architectural Erosion

© Structural Debt Index
© Can be computed for packages/namespaces or components (source files)
@ Number measures number of changes necessary to disentangle cyclic
dependency groups
@ Cyclic dependencies are a good indicator for structural erosion

@ ACD (Average Component Dependency, John Lakos)
© Measures overall coupling
© Value usually grows with system size
@ NCCD is a normalized version of this metric

© Those metrics can be computed by our free tool Sonargraph-

Explorer
© Can be integrated with SonarQube/Jenkins

4/12/18 © 2005-2018, hello2Zmorrow 14

. HELLOZMORROW

Do you manage Technical/Architectural Debt?

© Do you have binding rules for code quality?

© Do you measure quality rule violations on a daily base?

© Is your architecture defined in a formal way?

© Do you measure architecture violations on a daily base?

© Does quality management happen at the end of development?
@ Does your current QM lead to sustainable results?

© Are there incentives for writing great code?

4/12/18 © 2005-2018, hello2Zmorrow 15

-
. HELLOZMORROW glg
e

- 4

How to enforce an Architectural Model

© You need a formal machine readable version of your architectural
model

@ This allows a tool based approach where the tool can warn
developers in their IDE or break the build when architecture
violations are introduced

4/12/18 © 2005-2018, hello2morrow 16

4/12/18

oder QO

Q—

E Order

E Customer

g Product

© 2005-2018, hello2morrow

17

L
(X

g
. HELLOZMORROW gl
. ¢

First step: think about package naming

Use functionality as top-level discriminator
com.hello2Zmorrow.ordermanagement.order

com.hello2Zmorrow.ordermanagement.customer
com.hello2Zmorrow.ordermanagement.product

4/12/18 © 2005-2018, hello2morrow 18

HELLOMORROW

Step 2: High level architecture (in DSL)

artifact Order

{

include "**/order/**"

connect to Customer, Product

artifact Customer

{

include "**/customer/**"

artifact Product

{

include "**/product/**"

4/12/18 © 2005-2018, hello2morrow 19

. HELLOZMORROW

Advantages of a DSL

 Easy to read and understand

@ Works well with version control systems and can be diffed
© Can be changed without access to a tool

© More powerful than just drawing boxes

@ Different aspects can be described in independent files
© Architecture diagrams can be generated

© Architecture files can be generated from diagrams

4/12/18 © 2005-2018, hello2Zmorrow 20

. HELLOZMORROW

Components

@ A component is the atomic element of architecture

© Usually a single source file, in C/C++ a combination of header
and source files

© Is addressed via the relevant parts of its physical location

"Core/com/hello2morrow/Main"

"External [Java]/[Unknown]/java/lang/reflect/Method"
"NHibernate/Action/SimpleAction”

"External [C#]/System/System/Uri"

« Patterns address groups of components

"Core/**/business/**"

"External*/*/java/lang/reflect/*"

4/12/18 © 2005-2018, hello2Zmorrow 21

. HELLOZMORROW

Artifacts

© Artifacts can contain components or other artifacts
© Artifacts have interfaces and connectors

© An interface is an incoming port granting access to a subset of
components in artifact

© A connector is an outgoing port that can be connected to an
interface of another artifacts

© Connections are only possible between connectors and interfaces

© Each artifact has a default connector and a default interface, both
containing all components in the artifacts

© User can restrict the default connector and the default interface

4/12/18 © 2005-2018, hello2Zmorrow 22

g 7
£ ﬁt

2 O

. HELLOMORROW

Step 3: Layering of major elements

Controller

IService

Data Access

Model

4/12/18 © 2005-2018, hello2morrow 23

HELLOMORROW

s :
213y Aok 8,
hocmeatiane 07

Formal description of Layering:

// layering.arc
artifact Service

{

include "**/service/**"

connect to Controller

artifact Controller
{

include "**/controller/**"

connect to DataAccess
require "JDBC"
artifact DataAccess

{
include "**/data/**"

connect to JDBC

public artifact Model

{
include "**/model/**"
}
interface IService
{
export Service, Model
}
4/12/18

© 2005-2018, hello2morrow 24

B

%,

HELLOMORROW

e —_—
W‘?
A ST

N
v

Mreay sl
¢ gt O

Step 4: Putting everything together

artifact Order

{
include "**/order/**"
apply "layering"
// Connect to the IService interface of Customer and Product
connect to Customer.IService, Product.IService
}

artifact Customer

{

include "**/customer/**"

apply "layering"

artifact Product

{

include "**/product/**"

apply "layering"

// By using apply we define the artifacts of “IDBC" in this scope
apply "JDBC"

4/12/18 © 2005-2018, hello2morrow 25

HELLOMORROW

Final detalils

// JIDBC.arc
artifact JDBC

{

include "**/javax/sql/**"

4/12/18 © 2005-2018, hello2morrow 26

HELLOMORROW

* Aeks 0,98
A i i ‘./i\. P A
Gt 00310972 1 1 %0+ Fu:

Where do modules fit?

IService

IService IService

AT 2

Model Model

4/12/18 © 2005-2018, hello2morrow 27

. HELLOZMORROW

Modules and Architecture

© Modules structure should reflect the topmost level of your
architecture

© Limit number of modules to dozen’s at the most
© 100’s of modules always create new problems

© Modules are very limited when it comes to enforce architectural
restrictions — no nesting

© Maven is not a module system and is not able to enforce
architectural descriptions

4/12/18 © 2005-2018, hello2Zmorrow 28

i
i

90,
-

¥
L4+
e

O

IService

A

Model

Controller

©

IService

b - -

I1Service

4/12/18 © 2005-2018, hello2morrow 29

CIEa

HELLOMORROW

Same Thing as Micro-Services

Controller
O
I1Service
NS N2
Model Mede!
Customer Product Common
] Service [Service [

Controlier

I1Service §
I1Service
Data Data
Access Access
L\
Moce! NModel

Model

4/12/18 © 2005-2018, hello2morrow 30

o

o8
HELLOZMORROW At

[N

DSL Implements UML Component Diagrams

«subsystem» WebStore £] «subsystem» Warehouses g
internal structure internal structure
Search Manage

ProductSearch Inventory Inventory
—(==-20—1 +H—O<1
|
|
|
|
|
«subsystem» Accounting £ :
internal structure :
Manage |
OnlineShopping 2] Inventory |

Oo—L (] -

:Shopping Cart T

Manage
Customers
Manage 1
UserSession Customers g
O—L G -—->0— :Customers
mm!
Manage
© uml-diagrams.org Accounts g
J
g]
:Accounts

4/12/18 © 2005-2018, hello2morrow 31

HELLOMORROW

Another bigger example live

'm), Standalone C# 'm), Standalone C++ ; 'm), Standalone Java
¢ = —] S

—— —— | -l

'm) Language Provider C# | 'i-l.a_ng_u;ge Provider C++ | ‘=, Standalone ; ‘=i, Language Provider Java |
[k i g g) N\ e g -, L} == |t e e J

i Common)

4/12/18 © 2005-2018, hello2morrow 32

. HELLOMORROW

Q&A

a.zitzewitz@hello2Zmorrow.com
blog.hello2morrow.com
@AZ_hello2Zmorrow

