
Truly Transformational Shift-Left Proactive Testing™- 1©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Truly Transformational Truly Transformational

ShiftShift--Left Left

Proactive Testing™Proactive Testing™
GO PRO MANAGEMENT, INC.

SYSTEM ACQUISITION & DEVELOPMENT

QUALITY/TESTING
PRODUCTIVITY

22 CYNTHIA ROAD

NEEDHAM, MA 02494-1461
INFO@GOPROMANAGEMENT.COM
WWW.GOPROMANAGEMENT.COM

(781) 444-5753

BUSINESS ENGINEERING

TRAINING

Robin F. Goldsmith, JD

Truly Transformational Shift-Left Proactive Testing™- 2©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

What Does “Shift Left” Mean to You?What Does “Shift Left” Mean to You?

 . .

Truly Transformational Shift-Left Proactive Testing™- 3©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

“Shift Left” Efforts You Have Seen“Shift Left” Efforts You Have Seen

What Was DoneWhat Was Done How Well It WorkedHow Well It Worked

 . .

Truly Transformational Shift-Left Proactive Testing™- 4©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

ObjectivesObjectives

Shift-left’s big benefits vs. marginal
methods often claimed for it

Limitations of traditional tail-end
reactive testing

Proactive Testing™ that truly finds
and prevents defects earlier in the

life cycle

Truly Transformational Shift-Left Proactive Testing™- 5©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Typical Development Life CycleTypical Development Life Cycle

Feasi-

bility

Require-

ments Design Code Test

Truly Transformational Shift-Left Proactive Testing™- 6©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

TailTail--End Testing IssuesEnd Testing Issues

Maximum

defects

Maximum
number of
defects

Minimal

them

Minimal
time to fix
them

Maximal

each defect

Maximal
cost to fix
each defect

Too many missed

and/or not fixed

Truly Transformational Shift-Left Proactive Testing™- 7©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

SolutionSolution——Shift Testing LeftShift Testing Left

Two WaysTwo Ways

Feasi-

bility

Require-

ments Design Code Test

TestTestTestTest

Shift Left Phases
Date

Truly Transformational Shift-Left Proactive Testing™- 8©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Claimed ShiftClaimed Shift--Left Approaches:Left Approaches:

Automated TestingAutomated Testing

Feasi-

bility

Require-

ments Design Code Test

Date

Test

Truly Transformational Shift-Left Proactive Testing™- 9©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Rely on Developer to Rely on Developer to Test or Test or

Integrate QA/Testers with DevelopersIntegrate QA/Testers with Developers

Feasi-

bility

Require-

ments Design Code Test

Date

P
h
ase?

Truly Transformational Shift-Left Proactive Testing™- 10©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Involve Testers Observing Involve Testers Observing

Requirements and Design DefinitionRequirements and Design Definition

Feasi-

bility

Require-

ments Design Code

TestTestersTesters

Date

Truly Transformational Shift-Left Proactive Testing™- 11©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Small IterationsSmall Iterations

Feasi-

bility
Require-

ments

Date

Design Code Test

Require-

ments
Design Code Test

Truly Transformational Shift-Left Proactive Testing™- 12©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Small Iterations Plus TestSmall Iterations Plus Test--FirstFirst

Feasi-

bility
Require-

ments

Date

Design Code Test

Require-

ments
Design

Test

Code TestTest

P
h
ase

P
h
ase

Truly Transformational Shift-Left Proactive Testing™- 13©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

TestTest--First Development Surely Beats First Development Surely Beats

Traditional TestTraditional Test--Last (or Never) CodingLast (or Never) Coding

 Developer(s) decide how

to test that code works

and write code in the

program being developed

(Software Under Test—

SUT) to perform the tests

 Then write program’s

regular, functional code

 Code works when

included tests are passed

Included tests are re-executed

for every change

Truly Transformational Shift-Left Proactive Testing™- 14©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

TestTest--First Development Is Good; but Has First Development Is Good; but Has

Some SeldomSome Seldom--Recognized LimitationsRecognized Limitations

 Programmer/code-centric view can easily miss the bigger,

more important issues to test

 Developer’s (even the pair’s) mindset defining tests is likely

to be largely same as for the code

– Mainly testing what is (going to be) written

– Won’t catch what developer doesn’t understand adequately or overlooks

– Developer still is unlikely to have a testing “break it” mindset or systematic test

planning and design methods, so probably overlooks many conditions needing

testing

 Agile’s fanatical resistance to writing anything other than executable

code, including tests, is high-effort with relatively low leverage payback

Plus the religious-like “How dare you question my Agile techniques?”

Truly Transformational Shift-Left Proactive Testing™- 15©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Coding Is Smallest Source of ErrorsCoding Is Smallest Source of Errors

Coding
(small functions)

Focusing

here

Truly Transformational Shift-Left Proactive Testing™- 16©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Coding Is Smallest Source of ErrorsCoding Is Smallest Source of Errors

System Design

Module Design

Coding
(small functions)

Diverts

attention

from

here

2/3 of errors in delivered code are in the design.

Does essentially having no design increase, decrease, or just mask that?

Focusing

here

Truly Transformational Shift-Left Proactive Testing™- 17©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Coding Is Smallest Source of ErrorsCoding Is Smallest Source of Errors

Business Requirements

System Design

Module Design

Coding
(small functions)

Diverts

attention

from

here

Missed/incorrect/unclear business requirements

are biggest source of design problems

Focusing

here

Truly Transformational Shift-Left Proactive Testing™- 18©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Project Management Life CycleProject Management Life Cycle

SYSTEM

DESIGN

IMPLEMENTATION

(Builds, UAT)

DEVELOPMENT

(Build, Test)

SYSTEMS ANALYSIS

(Requirements)

OPERATIONS &

MAINTENANCE

Increments

Iterations

Initiating

Planning,

Organizing

Project

Execution,

Direction,

and

Control

Closing

Project review and

process improvement

FEASIBILITY

ANALYSIS
Project Plan:

Product,

Schedule,

Budget,

Tasks

Reviews

ReqsTop-Level
Detail

Truly Transformational Shift-Left Proactive Testing™- 19©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Requirements Definition Usually Occurs inRequirements Definition Usually Occurs in
Initiation/Feasibility Analysis

 Top-level requirements

 Compares two or more
alternative approaches,
including no change
– Can it be done?

– What are the estimated costs,
benefits, and Return on
Investment (ROI)?

 Sets project, budget, and
schedule—often in concrete
and doomed to failure

Systems Analysis

(Requirements Phase)

 Drives requirements to
detail

 Translates to high-level
conceptual design of
solution consistent with
chosen major approach

 Should precede product/
vendor selection

 ROI should be redone

Often occurs implicitly Often done iteratively

Truly Transformational Shift-Left Proactive Testing™- 20©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Error Sources by PhaseError Sources by Phase
Portion of

System Correct

Portion of

System In Error
Phase

Requirement missed,

extra, or misdefined

Requirements
Required and defined appropriately

Included in design and designed

appropriately

Design

Included in product/system and

built appropriately

Build & Test

Included in finished system

and installed appropriately

Implementation

Missing from design

or inappropriate

Missing or built

inappropriately

Missing from or

inappropriate in finished system

Truly Transformational Shift-Left Proactive Testing™- 21©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

IT (and Other?) Project EconomicsIT (and Other?) Project Economics
 Maintenance is 66-90% of system cost

 Maintenance is mainly completion/ correction of

development (wrong/missed requirements)

 2/3 of finished system errors are requirements

and design errors

 Fixing a requirements error will cost

– 10X+ during development/construction

– 75-1000X+ after installation (maintenance)

Do your organization’s routine measures show these effects?

Big effects of true Shift-Left

Truly Transformational Shift-Left Proactive Testing™- 22©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Two Types of Requirements:Two Types of Requirements:
Business/UserBusiness/User Product/System/SoftwareProduct/System/Software

 Business/user language &
view, conceptual; exists within
the business environment

 Serves business objectives

 What business results must
be delivered to solve a
business need (problem,
opportunity, or challenge) and
provide value when
delivered/satisfied/met

 Language & view of a human-

defined product/system

 One of the possible ways

How (design) presumably to

accomplish the presumed

business requirements

 Often phrased in terms of

external functions each piece of

the product/system must perform

to work as designed

(Non/Functional Specifications)
Many possible ways to accomplish

Truly Transformational Shift-Left Proactive Testing™- 23©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Even Requirements “Experts” Think Even Requirements “Experts” Think

the Difference Is Just Level of Detailthe Difference Is Just Level of Detail

Business Requirements

(High-Level, Vague)

Product/

System/

Software

Reqs.

(Detailed)

BABOK v3 2.3 p. 26

“Business requirements:

statements of goals, objectives,

and outcomes that describe why a

change has been initiated.”

Truly Transformational Shift-Left Proactive Testing™- 24©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

When Business/User Requirements Are When Business/User Requirements Are

Detailed First, Creep Is ReducedDetailed First, Creep Is Reduced

Business Requirements

(High-Level)

Business

Product/System/Software

Reqs.(High-Level)

Reqs.

(Detailed)

Reqs.

(Detailed)

Product/

System/

Software

Truly Transformational Shift-Left Proactive Testing™- 25©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Proactive TestingProactive TestingTMTM Life CycleLife Cycle

ACCEPTANCE

Feasibility

Report

High-Level

Business

Requirements

FEASIBILITY

ANALYSIS

DEVELOP-

MENT

SYSTEM

DESIGN

SYSTEMS

ANALYSIS

Acceptance

Test

Code (Debug,

Informal Review)

Formal Review

Black/White Box

Unit Tests

Integration Tests
System, Special

Tests

PRODUCTION,

OPS & MAINT.
[Life Cycle reit.]

Requirements-

Based Tests

Acceptance

Test Plan

Acceptance

Criteria

Independent

(QA) Tests

Tech/Devel.

Test Plans

Low-Level

Design

See: www.ddj.com/dept/debug

/184414873 /184414883

/184414897 /184414911 or

www.gopromanagement.com

Phase’s

Primary

Deliverable

Testing

Activity,

Measure,

Manage

LIFECYCLE

PHASE

Static

Dynamic

Reactive

Proactive

Truly Transformational Shift-Left Proactive Testing™- 26©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Key Proactive Testing™ Concepts Key Proactive Testing™ Concepts 1 of 21 of 2

 Develop iteratively—whatever size piece is coded should be

designed and responsive to adequately defined REAL,

business requirements, which in turn both should be tested

 Define more complete true user acceptance tests proactively

at start, keep independent of design

 Use Proactive Testing™, in conjunction with more effective

discovery and specification, techniques to improve the

accuracy, completeness, and clarity/testability of the

requirements and design

– Write enough to help—but no more, and no less

– Catch big-picture issues, keep refocusing based on risk

Truly Transformational Shift-Left Proactive Testing™- 27©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

 Let higher-level (than just code) testing planning/design

thought processes drive development to

– Economically anticipate and avert larger consequences of design

issues that ordinarily cause rework

– Plan for coding/testing early to avoid biggest rework risks as well as

implementing immediately useful functionality

– Increase awareness of more of the frequently-overlooked conditions

that code/tests must address

 Plan/design tests early, prioritize, promote reuse

– Concisely define, detect issues top-down at varying levels

– Create and apply reusable test designs and test cases

– Implement selectively based on risk

Key Proactive Testing™ Concepts Key Proactive Testing™ Concepts 2 of 22 of 2

Truly Transformational Shift-Left Proactive Testing™- 28©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Test Planning/Design vs. TestTest Planning/Design vs. Test--FirstFirst

Far lower
overhead

Prevents
errors in
first place

Can code
tests first
too

Truly Transformational Shift-Left Proactive Testing™- 29©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Proactive Testing Shifts Testing Left Proactive Testing Shifts Testing Left

Both WaysBoth Ways

Feasi-

bility

Require-

ments

Better

Design

Far Better

Code,Tests

Design

Tests

Review

Design

Review

Reqs

Review

Feasibility

Date
Phase Phase

Phase

Plus

Relevant

Iterations,

Automation

Truly Transformational Shift-Left Proactive Testing™- 30©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

SummarySummary
 Typical Agile test-driven development has advantages
compared to traditional test-last (or never) development
and reactive testing but also has (often unrecognized)
limitations due to its narrow programmer-based focus

 Proactive Testing™ enables truly Agile quicker, cheaper,
and better software development by feeding low-overhead
high-leverage test planning and design information into
development throughout the life cycle

 A variety of Proactive Testing™ techniques efficiently
reveal numerous otherwise overlooked test conditions at
varying levels, starting with detecting requirements and
design defect early, which then can be addressed
selectively based on risk and often can be reused

Truly Transformational Shift-Left Proactive Testing™- 31©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Go Pro Management, Inc. Seminars/Consulting--Relation to Life Cycle

Proactive Systems/Software Quality Assurance (SQA)™

Feasibility

Analysis
Systems

Analysis
System

Design
Develop-

ment Implement-

ation Operations

Maintenance

Proactive Testing:

Risk-Based Test Planning,

Design, and Management
Testing Early in the Life Cycle

Credibly Managing Projects and Processes with Metrics

21 Ways to Test Requirements

Making You a Leader

Managing Software Acquisition and Outsourcing:

> Purchasing Software and Services
> Controlling an Existing Vendor’s Performance

Proactive User Acceptance Testing

Reusable Test Designs

Test Estimation

Risk

Analysis

Defining and Managing

Business Requirements

Writing Right Agile User Story and

Acceptance Test Requirements Right

System Measurement Test Process ManagementROI

Truly Transformational Shift-Left Proactive Testing™- 32©2018 ©2018 ©2018 ©2018 GGGGO O O O PPPPRO RO RO RO MMMMANAGEMENT,ANAGEMENT,ANAGEMENT,ANAGEMENT, INCINCINCINC....

Robin F. Goldsmith, JDRobin F. Goldsmith, JD
robin@gopromanagement.comrobin@gopromanagement.com www.gopromanagment.comwww.gopromanagment.com

 President of Go Pro Management, Inc. consultancy since 1982, working directly with and training professionals in

business engineering, requirements analysis, software acquisition, project management, quality and testing.

 Partner with ProveIT.net in REAL ROI™ and ROI Value Modeling™.

 Previously a developer, systems programmer/DBA/QA, and project leader with the City of Cleveland, leading

financial institutions, and a “Big 4” consulting firm.

 Degrees: Kenyon College, A.B.; Pennsylvania State University, M.S. in Psychology; Suffolk University, J.D.; Boston

University, LL.M. in Tax Law.

 Published author and frequent speaker at leading professional conferences.

 Formerly International Vice President of the Association for Systems Management and Executive Editor of the

Journal of Systems Management.

 Founding Chairman of the New England Center for Organizational Effectiveness.

 Member of the Boston SPIN and SEPG’95 Planning and Program Committees.

 Attendee Networking Coordinator for STAR, Better Software, and Test Automation Conferences.

 Chair of record-setting attendance BOSCON 2000 and 2001, ASQ Boston Section‘s Annual Quality Conferences.

 Member IEEE Std. 829-2008 for Software Test Documentation Standard Revision Working Group.

 Member IEEE P730-2014 standard for Software Quality Assurance Revision Working Group.

 International Institute of Business Analysis (IIBA) Business Analysis Body of Knowledge (BABOKv2) subject expert.

 TechTarget SearchSoftwareQuality.com requirements and testing expert.

 Admitted to the Massachusetts Bar and licensed to practice law in Massachusetts.

 Author of book: Discovering REAL Business Requirements for Software Project Success

 Author of forthcoming book: Cut Creep—Write Right Agile User Story and Acceptance Test Requirements

Right

